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Simpson's rule

In numerical analysis, Simpson's rule is a method for numerical integration, the numerical approximation of definite
integrals. Specifically, it is the following approximation for n + 1 equally spaced subdivisions (where n is even): (General
Form)

b
/ f@)dz ~ 5 (f(z0) +4f (@) + 2f(2) + 41 (23) + 2f(24) + -+ + 4f (@n1) + f(2a)),
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where Az = b and z; = a + iAx.

Simpson's rule also corresponds to the three-point Newton-Cotes quadrature rule.

In English, the method is credited to the mathematician Thomas Simpson (1710-1761) of Leicestershire, England. However,
Johannes Kepler used similar formulas over 100 years prior, and for this reason the method is sometimes called Kepler's

rule, or Keplersche Fassregel (Kepler's barrel rule) in German.

Contents

Quadratic interpolation
Averaging the midpoint and the trapezoidal rules
Undetermined coefficients

Error
Composite Simpson's rule

Simpson's 3/8 rule
Composite Simpson's 3/8 rule

Alternative extended Simpson's rule
Simpson's rules in the case of narrow peaks

Composite Simpson's rule for irregularly spaced data
See also

Notes

References

External links

Quadratic interpolation
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Simpson's rule can be derived by
approximating the integrand f (x) (in
blue) by the quadratic interpolant P
(x) (in red).

An animation showing how
Simpson's rule approximation
improves with more strips.

One derivation replaces the integrand f(z) by the quadratic polynomial (i.e. parabola)P(x) which takes the same values as f(z) at the end points a and b and the

midpoint m = (a + b) / 2. One can use Lagrange polynomial interpolation to find an expression for this polynomial,
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Using integration by substitution one can show that'!

/abp(x) de =2 [f(a) +4Af (%") + f(b)] .

Introducing the step size h = (b — a)/2 this is also commonly written as

/abp(w) dz = 1 [f(a) + 4 (L) + 7)) -

Because of the 1/3 factor Simpson's rule is also referred to as Simpson's 1/3 rule (see below for generalization).

The calculation above can be simplified if one observes that (by scaling) there is no loss of generality in assuming thata = —1.

Averaging the midpoint and the trapezoidal rules

Another derivation constructs Simpson's rule from two simpler approximations: the midpoint rule
_ a+b
M=(-a)f (%)
and the trapezoidal rule

T = 3(b - a)(f(a) + £(0)).

The errors in these approximations are

L(b —a)®f"(a) + O((b — a)*) and

24 — (0 —a)*f"(a) + O((b - a)*),



respectively, where O((b — a)*) denotes a term asymptotically proportional to (b — a)*. The two O((b — a)*) terms are not equal; see Big O notation for more details. It

follows from the above formulas for the errors of the midpoint and trapezoidal rule that the leading error term vanishes if we take the weighted average

2M+T
—3

This weighted average is exactly Simpson's rule.

Using another approximation (for example, the trapezoidal rule with twice as many points), it is possible to take a suitable weighted average and eliminate another error

term. This is Romberg's method.

Undetermined coefficients

The third derivation starts from the ansatz

b
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The coefficients a, p and y can be fixed by requiring that this approximation be exact for all quadratic polynomials. This yields Simpson's rule.

Error

The error in approximating an integral by Simpson's rule for n = 2 is
1 (b-a\? @
ol 5 ) f ),

where ¢ (the Greek letter xi) is some number between a and b2

The error is asymptotically proportional to (b — a)‘s. However, the above derivations suggest an error proportional to (b — a)4. Simpson's rule gains an extra order

because the points at which the integrand is evaluated are distributed symmetrically in the interval [a, b].

Since the error term is proportional to the fourth derivative of f at £, this shows that Simpson's rule provides exact results for any polynomial f of degree three or less,

since the fourth derivative of such a polynomial is zero at all points.

If the second derivative f” exists and is convex in the interval (a, b):
—a 3 a b —a [5
b-af (5) +1(52) 7 (52) < [ f)de < 52 (@) + 4 (52) + )]

Composite Simpson's rule

If the interval of integration [a, b] is in some sense "small", then Simpson's rule with n = 2 subintervals will provide an adequate approximation to the exact integral. By
small, what we really mean is that the function being integrated is relatively smooth over the interval [a, b]. For such a function, a smooth quadratic interpolant like the

one used in Simpson's rule will give good results.

However, it is often the case that the function we are trying to integrate is not smooth over the interval. Typically, this means that either the function is highly oscillatory,
or it lacks derivatives at certain points. In these cases, Simpson's rule may give very poor results. One common way of handling this problem is by breaking up the
interval [a, b] into n > 2 small subintervals. Simpson's rule is then applied to each subinterval, with the results being summed to produce an approximation for the
integral over the entire interval. This sort of approach is termed the composite Simpson's rule.

Suppose that the interval [a, b] is split up into n sub-intervals, with n an even number. Then, the composite Simpson's rule is given by

/ab f(z)dz
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where z; = a+ jh for j=0,1,...,n — 1,n with h = (b — a)/n; in particular, €y = a and z,, = b. This composite rule with n = 2 corresponds with the regular

Simpson's Rule of the preceding section.
The error committed by the composite Simpson's rule is
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where ¢ is some number between a and band h = (b — a)/n is the "step length".!! The error is bounded (in absolute value) by
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This formulation splits the interval [a, b] in subintervals of equal length. In practice, it is often advantageous to use subintervals of different lengths, and concentrate the
efforts on the places where the integrand is less well-behaved. This leads to the adaptive Simpson's method.

Simpson's 3/8 rule




Simpson's 3/8 rule is another method for numerical integration proposed by Thomas Simpson. It is based upon a cubic interpolation rather than a quadratic

interpolation. Simpson's 3/8 rule is as follows:

/ ) do B [fa) + 37 (222 137 (22) 4 10)] = 52 @)+ 37 (352) + 3 (52) + 10)],

where b — a = 3h. The error of this method is:

(b—a)® (4
— - I (9,

where ¢ is some number between a and b. Thus, the 3/8 rule is about twice as accurate as the standard method, but it uses one more function value. A composite 3/8 rule
also exists, similarly as above.™!

A further generalization of this concept for interpolation with arbitrary-degree polynomials are the Newton—Cotes formulas.

Composite Simpson's 3/8 rule

Dividing the interval [a, b] into n subintervals of length k = (b — @) /n and introducing the nodes ; = a + ih we have

b
/ f@)de ~ 3 [f(wo) + 3f(x1) + 3f(22) + 2f(w3) + 3f(wa) + 3(w5) + 2f(wg) + -+ + f(za)].-
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While the remainder for the rule is shown as:

- ase,"
80 ’

Note, we can only use this if n is a multiple of three.

The 3/8th rule is also called Simpson's second rule.

Alternative extended Simpson's rule

This is another formulation of a composite Simpson's rule: instead of applying Simpson's rule to disjoint segments of the integral to be approximated, Simpson's rule is
applied to overlapping segments, yielding:®

b n—4
/ f(z)dz ~ 4—’; [17)‘(1‘0) +59f(z1) + 43f(z2) +49f(z3) + 482 flxi) +49f(zn—3) + 43f(zn—2) + 59f (zp—1) + 17f(xn)|.
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The formula above is obtained by combining the original composite Simpson's rule with the one consisting of using Simpson's 3/8 rule in the extreme subintervals and

the standard 3-point rule in the remaining subintervals. The result is then obtained by taking the mean of the two formulas.

Simpson's rules in the case of narrow peaks

In the task of estimation of full area of narrow peak-like functions, Simpson's rules are much less efficient than trapezoidal rule. Namely, composite Simpson's 1/3 rule
requires 1.8 times more points to achieve the same accuracy'” as trapezoidal rule. Composite Simpson's 3/8 rule is even less accurate. Integral by Simpson's 1/3 rule can
be represented as a sum of 2/3 of integral by trapezoidal rule with step h and 1/3 of integral by rectangle rule with step 2h. No wonder that error of the sum corresponds

lo less accurate term. Averaging of Simpson's 1/3 rule composite sums with properly shifted frames produces following rules:
b n—2
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where two points outside of integrated region are exploited and
b n—3
[ @) de = dx[ostan) + 28500 + 285(an) 4 243 flai) + 235(012) 4 285(an) + 95(c)]
a i=3

Those rules are very much similar to Press's alternative extended Simpson's rule. Coefficients within the major part of the region being integrated equal one, differences
are only at the edges. These three rules can be associated with Euler-MacLaurin formula with the first derivative term and named Euler-MacLaurin integration
rules'”. They differ only in how the first derivative at the region end is calculated.

Composite Simpson's rule for irregularly spaced data

For some applications, the integration interval I = [a, b] needs to be divided into uneven intervals — perhaps due to uneven sampling of data, or missing or corrupted

data points. Suppose we divide the interval I into even number N of subintervals of widths k. Then the composite Simpson's rule is given by'®')

N/2-1

b
/ f)de = " (aifaiva + Bifaivs +mifai),
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k-1
where fi, = f (a + Z hi> are the function values at the kth sampling point on the interval I, and the coefficients «;, 3;, and n; are given by
i=0
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In case of odd number N of subintervals, the above formula are used up to the second to last interval, and the last interval is handled separately by adding the
following to the result:

afy +Bfn-1 +nfn-a,

where
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Example implementation in Python

import numpy as np
def simpson_nonuniform(x, f):
Simpson rule for irregularly spaced data.

Parameters
x : list or np.array of floats

Sampling points for the function values
f : list or np.array of floats

Function values at the sampling points

Returns

result = 0.0
for i in range(1, N, 2):
hph = h[i] + h[i - 1]
result += f[i] * ( h[i]**3 + h[i - 1]**3
+ 3. * h[i] * h[i - 1] * hph )\
/ (6 *h[i] * h[i - 1] )
result += f[i - 1] * (2. * h[i - 1]%*3 - h[i]**3
+ 3. % h[i] * h[i - 1]%%2)\
/ (6 * h[i - 1] * hph)
result += f[i + 1] * ( 2. * h[i]*#3 - h[i - 1]%%3
+ 3. % h[i - 1] * h[i]**2)\
/ (6 * h[i] * hph )

if (N+ 1) %2 == 0:
result += f[N] * ( 2 * h[N - 1]**2
+ 3. % h[N - 2] * h[N - 1])\
/(6% (h[N-2]+h[N-1]))

result += f[N - 1] * ( h[N - 1]**2
+ 3*h[N - 1]* h[N - 2] )\
(6 *h[N-2])
result -= f[N - 2] * h[N - 1]**3\
6 *

hIN - 2] * ( h[N - 2] + h[N - 1] ) )
return result

See also

= Gaussian quadrature
= Rectangle method
= Trapezoidal rule

= Boole's rule

Notes
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. Atkinson, equation (5.1.15); Suli and Mayers, Theorem 7.2
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. Matthews (2004)
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