
Simpson's rule
In numerical analysis, Simpson's rule is a method for numerical integration, the numerical approximation of definite 

integrals. Specifically, it is the following approximation for  equally spaced subdivisions (where  is even): (General 

Form) 

,

where  and . 

Simpson's rule also corresponds to the three-point Newton-Cotes quadrature rule. 

In English, the method is credited to the mathematician Thomas Simpson (1710–1761) of Leicestershire, England. However, 

Johannes Kepler used similar formulas over 100 years prior, and for this reason the method is sometimes called Kepler's 

rule, or Keplersche Fassregel (Kepler's barrel rule) in German. 
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One derivation replaces the integrand  by the quadratic polynomial (i.e. parabola)  which takes the same values as  at the end points a and b and the 

midpoint m = (a + b) / 2. One can use Lagrange polynomial interpolation to find an expression for this polynomial, 

Using integration by substitution one can show that[1]

Introducing the step size  this is also commonly written as 

Because of the  factor Simpson's rule is also referred to as Simpson's 1/3 rule (see below for generalization). 

The calculation above can be simplified if one observes that (by scaling) there is no loss of generality in assuming that 。

Another derivation constructs Simpson's rule from two simpler approximations: the midpoint rule

and the trapezoidal rule

The errors in these approximations are 

Simpson's rule can be derived by 

approximating the integrand f (x) (in 

blue) by the quadratic interpolant P

(x) (in red).

An animation showing how 

Simpson's rule approximation 

improves with more strips.
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respectively, where  denotes a term asymptotically proportional to . The two  terms are not equal; see Big O notation for more details. It 

follows from the above formulas for the errors of the midpoint and trapezoidal rule that the leading error term vanishes if we take the weighted average

This weighted average is exactly Simpson's rule. 

Using another approximation (for example, the trapezoidal rule with twice as many points), it is possible to take a suitable weighted average and eliminate another error 

term. This is Romberg's method. 

The third derivation starts from the ansatz

The coefficients α, β and γ can be fixed by requiring that this approximation be exact for all quadratic polynomials. This yields Simpson's rule. 

The error in approximating an integral by Simpson's rule for  is 

where  (the Greek letter xi) is some number between  and .[2]

The error is asymptotically proportional to . However, the above derivations suggest an error proportional to . Simpson's rule gains an extra order 

because the points at which the integrand is evaluated are distributed symmetrically in the interval . 

Since the error term is proportional to the fourth derivative of  at , this shows that Simpson's rule provides exact results for any polynomial  of degree three or less, 

since the fourth derivative of such a polynomial is zero at all points. 

If the second derivative  exists and is convex in the interval : 

If the interval of integration  is in some sense "small", then Simpson's rule with  subintervals will provide an adequate approximation to the exact integral. By 

small, what we really mean is that the function being integrated is relatively smooth over the interval . For such a function, a smooth quadratic interpolant like the 

one used in Simpson's rule will give good results. 

However, it is often the case that the function we are trying to integrate is not smooth over the interval. Typically, this means that either the function is highly oscillatory, 

or it lacks derivatives at certain points. In these cases, Simpson's rule may give very poor results. One common way of handling this problem is by breaking up the 

interval  into  small subintervals. Simpson's rule is then applied to each subinterval, with the results being summed to produce an approximation for the 

integral over the entire interval. This sort of approach is termed the composite Simpson's rule. 

Suppose that the interval  is split up into  sub-intervals, with  an even number. Then, the composite Simpson's rule is given by 

where  for  with ; in particular,  and . This composite rule with  corresponds with the regular 

Simpson's Rule of the preceding section. 

The error committed by the composite Simpson's rule is 

where  is some number between  and  and  is the "step length".[3] The error is bounded (in absolute value) by 

This formulation splits the interval  in subintervals of equal length. In practice, it is often advantageous to use subintervals of different lengths, and concentrate the 

efforts on the places where the integrand is less well-behaved. This leads to the adaptive Simpson's method. 
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Simpson's 3/8 rule is another method for numerical integration proposed by Thomas Simpson. It is based upon a cubic interpolation rather than a quadratic 

interpolation. Simpson's 3/8 rule is as follows: 

where b − a = 3h. The error of this method is: 

where  is some number between  and . Thus, the 3/8 rule is about twice as accurate as the standard method, but it uses one more function value. A composite 3/8 rule 

also exists, similarly as above.[4]

A further generalization of this concept for interpolation with arbitrary-degree polynomials are the Newton–Cotes formulas. 

Dividing the interval  into  subintervals of length  and introducing the nodes  we have 

While the remainder for the rule is shown as: 

[5]

Note, we can only use this if  is a multiple of three. 

The 3/8th rule is also called Simpson's second rule. 

This is another formulation of a composite Simpson's rule: instead of applying Simpson's rule to disjoint segments of the integral to be approximated, Simpson's rule is 

applied to overlapping segments, yielding:[6]

The formula above is obtained by combining the original composite Simpson's rule with the one consisting of using Simpson's 3/8 rule in the extreme subintervals and 

the standard 3-point rule in the remaining subintervals. The result is then obtained by taking the mean of the two formulas. 

In the task of estimation of full area of narrow peak-like functions, Simpson's rules are much less efficient than trapezoidal rule. Namely, composite Simpson's 1/3 rule 

requires 1.8 times more points to achieve the same accuracy[7] as trapezoidal rule. Composite Simpson's 3/8 rule is even less accurate. Integral by Simpson's 1/3 rule can 

be represented as a sum of 2/3 of integral by trapezoidal rule with step h and 1/3 of integral by rectangle rule with step 2h. No wonder that error of the sum corresponds 

lo less accurate term. Averaging of Simpson's 1/3 rule composite sums with properly shifted frames produces following rules: 

where two points outside of integrated region are exploited and 

Those rules are very much similar to Press's alternative extended Simpson's rule. Coefficients within the major part of the region being integrated equal one, differences 

are only at the edges. These three rules can be associated with Euler-MacLaurin formula with the first derivative term and named Euler-MacLaurin integration 

rules[7]. They differ only in how the first derivative at the region end is calculated. 

For some applications, the integration interval  needs to be divided into uneven intervals – perhaps due to uneven sampling of data, or missing or corrupted 

data points. Suppose we divide the interval  into even number  of subintervals of widths . Then the composite Simpson's rule is given by[8][9]

where  are the function values at the th sampling point on the interval , and the coefficients  and  are given by 
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In case of odd number  of subintervals, the above formula are used up to the second to last interval, and the last interval is handled separately by adding the 

following to the result: 

where 

Example implementation in Python

import numpy as np

def simpson_nonuniform(x, f): 
"""

    Simpson rule for irregularly spaced data.

        Parameters

        ­­­­­­­­­­

        x : list or np.array of floats

                Sampling points for the function values

        f : list or np.array of floats

                Function values at the sampling points

        Returns

        ­­­­­­­

        float : approximation for the integral

    """

    N = len(x) ­ 1
    h = np.diff(x) 

    result = 0.0
for i in range(1, N, 2): 

        hph = h[i] + h[i ­ 1] 
        result += f[i] * ( h[i]**3 + h[i ­ 1]**3

+ 3. * h[i] * h[i ­ 1] * hph )\ 
/ ( 6 * h[i] * h[i ­ 1] ) 

        result += f[i ­ 1] * ( 2. * h[i ­ 1]**3 ­ h[i]**3
+ 3. * h[i] * h[i ­ 1]**2)\ 

/ ( 6 * h[i ­ 1] * hph) 
        result += f[i + 1] * ( 2. * h[i]**3 ­ h[i ­ 1]**3

+ 3. * h[i ­ 1] * h[i]**2)\ 
/ ( 6 * h[i] * hph ) 

if (N + 1) % 2 == 0: 
        result += f[N] * ( 2 * h[N ­ 1]**2

+ 3. * h[N ­ 2] * h[N ­ 1])\ 
/ ( 6 * ( h[N ­ 2] + h[N ­ 1] ) ) 

        result += f[N ­ 1] * ( h[N ­ 1]**2
+ 3*h[N ­ 1]* h[N ­ 2] )\ 

/ ( 6 * h[N ­ 2] ) 
        result ­= f[N ­ 2] * h[N ­ 1]**3\ 

/ ( 6 * h[N ­ 2] * ( h[N ­ 2] + h[N ­ 1] ) ) 
return result 
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