METHOD of FLUXIONS

A N D

I N F I N I TE SERIES;

WITHITS

Application to the Geometry of Curve-Lines.

By the Inventor

Sir I SAAC NEWTON, K.

Late Prefident of the Royal Society.
Tranflated from the AUTHOR's Latin Original not yet made publick.

To which is fubjoin'd,
A Perpetual Comment upon the whole Work,

Confifting of

Annotations, Illustrations, and Supplements,
In order to make this Treatife

A compleat Inftitution for the ufe of LEARNERS.

By $\mathcal{F} O H N C O L S O N, M . A$ and F.R.S.
Mafter of Sir Fofeph Williamfon's free Mathematical-School at Rochefter.

$$
L O N D O N:
$$

Printed by Henry Woodfall;
And Sold by John Nourse, at the Lamb without Temple-Bar.

$$
\overline{\text { M.DCC.XXXVI. }}
$$

$$
1 \times 2 \therefore
$$

x^{2} ROAMS 83.12

T O

William Fones Efq; F.R.S.

$S I R$,

 T was a laudable cuftom among the ancient Geometers, and very worthy to be imitated by their Succeffors, to addrefs their Mathematical labours, not fo much to Men of eminent rank and Itation in the world, as to Perfons of diftinguifh'd merit and proficience in the fame Studies. For they knew very well, that fuch only could be competent Judges of their Works, and would receive them with the efteem they might deferve. So far at leaft I can copy after thofe great Originals, as to chufe a Patron for thefe Speculations, whofe known skill and abilities in fuch matters will enable him to judge, and whofe known candor will incline him to judge favourably, of the fhare I have had in the prefent performance. For as to the fundamental part of the Work, of which I am only the Interpreter, I know it cannot but pleafe you; it will need no protection, nor can it receive a greater recommendation, than to bear the name of its illuftrious Author. However, it very naturally applies itfelf to you, who had the honour (for I am fure you think it fo) of the Author's friendihip and familiarity in his life-time; who had his own confent to publifh an elegant edition of fome of his pieces, of a nature not very different from this ; and who have fo juft an efteem for, as well as knowledge of, hiis other moft fublime, mott aث̇mirable, and. jufly celebrated Works.

But befides thefe motives of a publick nature, I had others that more nearly concern myfelf. The many perfonal obligations I have received from you, and your generous manner of conferring them, require all the teftimonies of gratitude in my power. Among the reft, give me leave to mention one, (tho' it be a privilege I have enjoy'd in common with many others, who have the happinefs of your acquaintance,) which is, the free accefs you have always allow'd me, to your copious Collegtion of whatever is choice and excellent, in the Mathematicks. Your judgment and induftry, in collecting thofe waluable кє; $\operatorname{rin}^{\prime} \lambda \alpha$, are not more confpicuous, than the freedom and readinefs with which you communicate them, to all fuch who you know will apply them to their proper ufe, that is, to the general improvement of Science.

Before I take my leave, permit me, good Sir, to join my wifhes to thofe of the publick, that your own ufeful Lucubrations may fee the light, with all convenient fpeed; which, if I rightly conceive of them, will be an excellent methodical Introduction, not only to the mathematical Sciences in general, but alfo to thefe, as well as to the other curious and abftrufe Speculations of our great Author. You are very well apprized, as all other good Judges muft be, that to illuftrate him is to cultivate real Science, and to make his Difcoveries eafy and familiar, will be no fmall improvement in Mathematicks and Philofophy.

That you will receive this addrefs with your ufual candor, and with that favour and friendfhip I have fo long and often experienced, is the earneft requeft of,
S I R,

Your moft obedient bumble Servant,
J. COLSON.

THE

P R E F A C E.

Cannot but very much congratulate with my Mathematical Readers, and think it one of the moft fortunate circumitances of my Life, that I have it in my power to prefent the publick with a moft valuable Anecdote, of the greateft Mafter in Mathematical and Philofophical Knowledge, that ever appear'd in the World. And fo much the more, becaufe this Anecdote is of an elementiry nature, preparatory and introductory to his other moft aiduous and fublime Speculations, and intended by himfelf for the inftruction of Novices and Learners. I therefore gladly embraced the opportunity that was put into my hands, of publinhing this potthumous Work, becaure I found it had been compofed with that view and defign. And that my own Country-men might firft enjoy the benefit of this publication, I rcfolved upon giving it in an Englifl Tranflation, with fome additional Remarks of my own. I thought it highly injurious to the memory and rcputation of the great Author, as well as invidious to the glory of our own Nation, that fo curious and ufeful a piece fhould be any longer fupprefs'd, and confined to a few private hands, which ought to be commenicated to all the learned World for general Inftruction. And more efpecially at a time when the Principles of the Method here taught have been fcrupuloufly fifted and examin'd, have been vigorou:lly oppofed and (we may fay) ignominiounly rejected as infufficient, by fome Mathematical Gentlemen, who feem not to have derived their knowledge of them from their only true Source, that is, from our Author's own Treatife wrotc exprefly to explain them. And on the other hand, the Principles of this Method have been zealoufly and commendably defended by other Mathematical Gentlemen, who yet

The PREFACE.

f.em to have been as little acquainted with this Work, (or at leaft to have over-look'd it,) the only genuine and original Fountain of this kind of knowledge. For what has been elfewhere deliver'd by our Author, concerning this Method, was only accidental and occafional, and far from that copioufnefs with which he treats of it here, and illuftrates it with a great variety of choice Examples.

The learned and ingenious Dr. Pemberton, as he acquaints us in his View of Sir Ifaac Newton's Philofophy, had once a defign of publifhing this Work, with the confent and under the infpection of the Author himfelf; which if he had then accomplifh'd, he would certainly have deferved and received the thanks of all lovers of Science. The Work would have then appear'd with a double advantage, as recsiving the laft Emendations of its great Author, and likewife in fafling through the hands of fo able an Editor. And among the other good effects of this publication, poffibly it might have prevented all or a great pari of thofe Difputes, which have fince been raifed, and which have been fo ftrenuounly and warmly parfaed on both fides, concerning the validity of the Principles of this Method. They would doubtlefs have been placed in fo good a light, as would have cleared them from any imputation of being in any wife defective, or not fufficiently demonftrated. But fince the Author's Death, as the Doctor informs us, prevented the execution of that defign, and fince he has not thought fit to refume it hitherto, it became needful that this publication fhould be undertook by another, tho' a much inferior hand.

For it was now become highly neceffary, that at laft the great Sir Ifach himfelf thould interpofe, thould produce his genuine Method of Fluxions, and bring it to the teft of all impartial and confiderate Mathematicians; to fhew its evidence and fimplicity, to maintain and defend it in his own way, to convince his Opponents, and to teach his Difciples and Followers upon what grounds they fhould proceed in vindication of the Truth and Himfelf. And that this might be done the more eafily and readily, I refolved to accompany it with an ample Commentary, according to the beft of my Rkill, and (I believe) according to the mind and intention of the Author, wherever I thought it needful; and particularly with an Eye to the fore-mention'd Controverfy. In which I have endeavou'd to obviate the difficulties that have been raifed, and to explain every thing in fo full a manner, as to remove all the objections of any force, that have been any where made, at leaft fuch as have occur'd to my obfervation. If what is here advanced, as there is good rea-
son to hope, fhall prove to the fatisfaction of thofe Gentlemen, who firft farted thefe objections, and who (I am willing to fuppofe) had only the caufe of Truth at heart; I hall be very glad to have con:tributed any thing, towards the removing of their Scruples. But if it Chall happen otherwife, and what is here offer'd fould not appear to be fufficient evidence, conviction, and demonftration to them; yet I am perfuaded it will be fuch to mont other thinking Readers, who thall apply themfelves to it with unprejudiced and impartial minds; and then I fhall not think my labour ill beftow'd. It fhould however be well confider'd by thofe Gentlemen, that the great number of Examples they will find here, to which the Method of Fluxions is fuccefsfully apply'd, are fo many vouchers for the truth of the Principles, on which that Method is founded. For the Deductions are always conformable to what has been derived from other uncontroverted Principles, and therefore muft be acknowledg'd as true. This argument chould have its due weight, even with fuch as cannot, as well as with fuch as will not, enter into the proof of the Principles themfelves. And the bypotbefis that has been advanced to evade this conclufion, of one error in reafoning being fill corrected by another equal and contrary to it, and that fo regularly, conftantly, and frequently, as it muft be fuppos'd to do here; this bypotbefis, I fay, ought not to be ferioufly refuted, becaufe I can hardly think it is ferioully propofed.

The chief Principle, upon which the Method of Fluxions is here built, is this very fimple one, taken from the Rational Mechanicks; which is, That Mathematical Quantity, particularly Extenfion, may be conceived as generated by continued local Motion; and that allQuantities whatever, at leaft by analogy and accommodation, may be conceived as generated after a like manner. Confequently there muft be comparativeVelocities of increafe and decreafe, during fuch generations, whofe Relations are fixt and determinable, and may therefore (problematically) be propofed to be found. This Problem our Author here folves by the help of another Principle, not lefs evident; which fuppofes that Qurnity is infinitely divifible, or that it may (mentally at leaf) fo far continually diminifh, as at laft, before it is totally extinguifh'd, to arrive at Qaantities that may be call'd vanifhing Quantities, or which are infinitely little, and lefs than any affignable Quantity. Or it fuppofes that we may form a Notion, not indeed of abfoiute, but of relative and comparative infinity. 'Tis a very juft exception to the Method of Indivifibles, as alfo to the foreign infinitefimal Method, that they have recourfe at once to
infinitely little Quantities, and infinite orders and gradations of thefe, not relatively but abfolutely fuch. They affume thefe Quantities famzil E femel, without any ceremony, as Quantities that actually and obvioufly exift, and make Computations with them accordingly; the refult of which muft needs be as precarious, as the abfolute exiftence of the Quantities they affume. And fome late Geometricians have carry'd thefe Speculations, about real and abfolute Infinity, ftill much farther, and have raifed imaginary Syfters of infinitely great and infinitely little Quantities, and their feveral orders and properties; which, to all fober Inquirers into mathematical Truths, muft certainly appear very notional and vifionary.

Thefe will be the inconveniencies that will arife, if we do not rightly diftinguifh between abfolute and relative lnfinity. Abfolute Infinity, as fuch, can hardly be the object either of our Conceptions or Calculations, but relative Infinity may, under a proper regulation. Our Author obferves this diftinction very ftrictly, and introduces none but infinitely little Quantities that are relatively fo; which he arrives at by begiming with finite Quantities, and proceeding by a gradual and neceflary progrefs of diminution. His Computations always commence by finite and intelligible Quantities; and then at laft he inquires what will be the refult in certain circumftances, when fuch or fuch Quantities are diminifh'd in infinitum. This is a conftant practice even in common Algebra and Geometry, and is no more than defcending from a general Propofition, to a particular Cafe which is certainly included in it. And from thefe eafy Principles, managed with a vaft deal of fkill and fagacity, he deduces his Method of Fluxions; which if we confider only fo far as he himfelf has carry'd it, together with the application he has made of it, either here or elfewhere, directly or indirectly, exprefly or tacitely, to the moft curious Difcoveries in Art and Nature, and to the fubliment Theories: We may defervedly efteem it as the greateft Work of Genius, and as the nobleft Effort that ever was made by the Hun an Mind. Indeed it muft be own'd, that many ufeful Inprovements, and new Applications, have been fince made by others, and probably will be ftill madc every day. For it is no mean excellence of this Method, that it is doubtlefs fill capable of a greater degree of perfection; and will always afford an inexhauftible fund of curious matter, to reward the pains of the ingenious and induftrious Analyft.

As I am defirous to make this as fatisfactory as polfible, efpecially to the very learned and ingenious Author of the Difcourfe call'd The Aralyf, whofe eminent Talents I acknowledge myfelf to have a
great veneration for; I hall here endeavour to obviate fome of his principal Objections to the Method of Fluxions, particularly fuch as I have not touch'd upon in my Comment, which is foon to follow.

He thinks cur Author has not proceeded in a demonftrative and rcientifical matter, in his Princip. lib. 2. lem. 2. where lie deduces the Moment of a Rectangle, whofe Sides are fuppofed to be variable Lines. I thall reprefent the matter Analytically thus, agreeably (I think) to the mind of the Author.

Let X and Y be two variable Lines, or Quantities, which at different periods of time acquire different values, by flowing or increafing continually, either equably or alike inequably. For inftance, let there be three periods of time, at which X becomes $\mathrm{A}-\frac{1}{2} a, \mathrm{~A}$, and $\mathrm{A}+\frac{1}{2} a$; and Y becomes $\mathrm{B}-\frac{1}{2} b, \mathrm{~B}$, and $\mathrm{B}+\frac{1}{2} b$ fucceffively and refpectively; where $\mathrm{A}, a, \mathrm{~B}, b$, are any quantities that may be affumed at pleafure. Then at the fame periods of time the variable Product or Rectangle XY will become $\overline{\mathrm{A}-\frac{1}{2} a} \times \overline{\mathrm{B}-\frac{1}{2} b}, \mathrm{AB}$, and $\overline{\mathrm{A}+\frac{1}{2} a} \times \overline{\mathrm{B}+\frac{1}{2} b}$, that is, $\mathrm{AB}-\frac{1}{2} a \mathrm{~B}-\frac{1}{2} b \mathrm{~A}+\frac{1}{4} a b, \mathrm{AB}$, and $A B+\frac{1}{2} a B+\frac{1}{2} b A+\frac{1}{4} a b$. Now in the interval from the firft period of time to the fecond, in which X from teing $\mathrm{A}-\frac{1}{2} a$ is become A , and in which Y from being $\mathrm{B}-\frac{1}{2} b$ is become B , the Product XY from being $\mathrm{AB}-\frac{1}{2} a \mathrm{~B}-\frac{1}{2} b \mathrm{~A}+\frac{1}{4} a b$ becomes AB ; that is, by Subtraction, its whole Increment during that interval is $\frac{1}{2} a \mathrm{~B}+\frac{1}{2} b \mathrm{~A}-$ $\frac{1}{4} a b$. And in the interval from the fecond period of time to the third, in which X from being A becomes $\mathrm{A}+\frac{1}{2} a$, and in which Y from being B becomes $B+\frac{1}{2} b$, the Product XY from being $A B$ b:comes $\mathrm{AB}+\frac{1}{2} a \mathrm{~B}+\frac{1}{2} b \mathrm{~A}-1 \frac{1}{4} a b$; that is, by Subtraction, its whole Increment during that interval is $\frac{1}{2} a \mathrm{~B}+\frac{1}{2} b \mathrm{~A}+\frac{1}{4} a b$. Add thefe two Increments together, and we fhall have $a \mathrm{~B}+b \mathrm{~A}$ for the compleat Increment of the Product XY, during the whole interval of time, while X flow'd from the value $\mathrm{A}-\frac{1}{2} a$ to $\mathrm{A}+\frac{1}{2} a$, or Y flow'd from the value $\mathrm{B}-\frac{1}{2} b$ to $\mathrm{B}+\frac{1}{2}$). Or it might have been found by cne Operation, thus: While X fows from A - $\frac{1}{2} a$ to A, and therce to $A+\frac{2}{2} a$, or Y flows fiom $B-\frac{1}{2} b$ to B, and thence to $\mathrm{B}+\frac{1}{2} b$, the Product XY will flow fiom $\mathrm{AB}-\frac{1}{2} a \mathrm{~B}-\frac{2}{2} b \mathrm{~A}+\frac{1}{4} a b$ to AB , and thence to $\mathrm{AB}+\frac{1}{2} a \mathrm{~B}+\frac{1}{2} b \mathrm{~A}+\frac{1}{4} a b$; therefore by Subtraction the whole Increment during that interval of time will be $a \mathrm{~B}+6 \mathrm{~A}$. Q.E.D.

This may eafily be illuftrated by Numbers thus: Make A, a, B, b, equal to $9,4,15,6$, refpecively; (or any other Numbers to be affumed at pleafure.) Then the three fucceffive values of X will be $7,9,11$, and the three fucceffive values of Y will be $12,15,18$, refpoctively.

The PREFACE.

refpectively. Alfo the three fucceffive values of the Product XY will be $84,135,198$. But $a \mathrm{~B}+6 \mathrm{~A}=4 \times 15+6 \times 9=114=$ 198-84. Q.E.O.

Thus the Lemma will be true of any conceivable finite Increments whatever ; and therefore by way of Corollary, it will be true of infinitely little Increments, which are call'd Moments, and which was the thing the Author principally intended here to demonftrate. But in the cafe of Moments it is to be confider'd, that X, or definitely $\mathrm{A}-\frac{3}{2} a, \mathrm{~A}$, and $\mathrm{A}+\frac{1}{2} a$, are to be taken indifferently for the fame Quantity; as alfo Y , and definitely $\mathrm{B}-\frac{1}{2} b, \mathrm{~B}, \mathrm{~B}+\frac{1}{2} b$. And the want of this Confideration has occafion'd not a few perplexities.

Now from hence the reft of our Author's Conclufions, in the fame Lemma, may be thus derived fomething more explicitely. The Moment of the Rectangle AB being found to be $\mathrm{A} b+a \mathrm{~B}$, when the contemporary Moments of A and B are reprefented by a and b refpectively; make $\mathrm{B}=\mathrm{A}$, and therefore $\vec{b}=a$, and then the Moment of $\mathrm{A} \times \mathrm{A}$, or A^{2}, will be $\mathrm{A} a+a \mathrm{~A}$, or $2 a \mathrm{~A}$. Again, make $B=A^{2}$, and therefore $b=2 a \mathrm{~A}$, and then the Moment of $A \times A^{2}$, or A^{3}, will be $2 a \mathrm{~A}^{2}+a \mathrm{~A}^{2}$, or $3 a \mathrm{~A}^{2}$. Again, make $\mathrm{B}=$ A^{3}, and therefore $b=3 a A^{2}$, and then the Moment of $A \times A^{3}$, or A^{4}, will be $3 a \mathrm{~A}^{3}+a \mathrm{~A}^{3}$, or $4 a \mathrm{~A}^{3}$. Again, make $\mathrm{B}=\mathrm{A}^{4}$, and therefore $b=4 a A^{3}$, and then the Moment of $A \times A^{4}$, or A^{5}, will be $4 a \mathrm{~A}^{4}+a \mathrm{~A}^{4}$, or $5 a^{4}$. And fo on in infinitum. Therefore in general, affuming m to reprefent any integer affirmative Number, the Moment of A^{m} will be $m a \mathrm{~A}^{m-\mathrm{x}}$.

Now becaufe $A^{m} \times A^{-m}=1$, (where m is any integer affirmative Number,) and becaufe the Moment of Unity, or any other conftant quantity, is $=0$; we fhall have $A^{m} \times$ Mom. $A^{-m}+A^{-m} \times$ Mom. $\mathrm{A}^{m}=0$, or Mom. $\mathrm{A}^{-m}=-\mathrm{A}^{-2 m} \times$ Mom. A^{m}. But Mom. A^{m} $=m a A^{m-r}$, as found before; therefore Mom. $\mathrm{A}^{-m}=-\mathrm{A}^{-2 m} \times$ $m a A^{m-1}=-m a A^{-m-1}$. Therefore the Moment of A^{m} will be $m a \mathrm{~A}^{m-1}$, when m is any integer Number, whether affirmative or negative.

And univerfally, if we put $A^{\frac{m}{n}}=B$, or $A^{m}=B^{n}$, where m and in may be any integer Numbers, affirmative or negative; then we fhall have $m a \mathrm{~A}^{m-1}=n b \mathrm{~B}^{n-\mathrm{x}}$, or $b=\frac{m a \mathrm{~A}^{m-1}}{n A^{\frac{m^{n-n}}{n}}}=\frac{m}{n} a \mathrm{~A}^{\frac{m}{n}}-\mathrm{r}$, which
be fill $m a A^{m-r}$, whether m be affirmative or negative, integer or fraction.

The Moment of AB being $b \mathrm{~A}+\mathrm{aB}$, and the Moment of CD being $d \mathrm{C}+c \mathrm{D}$; fuppofe $\mathrm{D}=\mathrm{AB}$, and therefore $d=b \mathrm{~A}+a \mathrm{~B}$, and then by Subftitution the Moment of $A B C$ will be $\widetilde{b A+a B} \times C$ $+c \mathrm{AB}=b \mathrm{AC}+a \mathrm{BC}+c \mathrm{AB}$. And likewife the Moment of $\mathrm{A}^{m} \mathrm{~B}^{n}$ will be $n 6 \mathrm{~B}^{n-1} \mathrm{~A}^{m}+m a \mathrm{~A}^{m-1} \mathrm{~B}^{n}$. And fo of any others.

Now there is fo near a connexion between the Method of Moments and the Method of Fluxions, that it will be very eafy to pafs from the one to the other. For the Fluxions or Velocities of increafe, are always proportional to the contemporary Moments. Thus if for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathcal{\mathcal { F }} c$. we write $x, y, z, \& c$. for $a, b, c, \& c$. we may write $\dot{x}, \dot{y}, \dot{z}, \& c$. Then the Fluxion of $x y$ will be $\dot{x} y+x \dot{y}$, the Fluxion of x^{m} will be $m \dot{x} x^{m-1}$, whether m be integer or fraction, affirmative or negative ; the Fluxion of $x y z$ will be $\dot{x y} z+x \dot{y} z+$ $x y \dot{z}$, and the Fluxion of $x^{m} y^{n}$ will be $m \dot{x} x^{m-x} y^{n}+n x^{m} \dot{y} y^{n-1}$. And fo of the reft.

Or the former Inquiry may be placed in another view, thus: Let A and $\mathrm{A}+a$ be two fucceffive values of the variable Quantity X , as alfo B and $\mathrm{B}+b$ be two fucceffive and contemporary values of Y ; then will AB and $\mathrm{AB}+a \mathrm{~B}+b \mathrm{~A}+a b$ be two fucceffive and contemporary values of the variable Product XY. And while X, by increaling perpetually, flows from its value A to $\mathrm{A}+a$, or Y flows from B to $B+b$; XY at the fame time will flow from $A B$ to $\mathrm{AB}+a \mathrm{~B}+b \mathrm{~A}+a b$, during which time its whole Increment, as appears by Subtraction, will become $a \mathrm{~B}+b \mathrm{~A}+a b$. Or in Numbers thus: Let A, a, B, b, be equal to $7,4,12,6$, refpectively; then will the two fucceffive values of X be $7, I \mathrm{I}$, and the two fucceffive values of Y will be 12, 18 . Alfo the two fucceffive values of the Product XY will be 84,198 . But the Increment $a \mathrm{~B}+b \mathrm{~A}+$ $a b=4^{8}+42+24=114=19^{8}-84$, as before.

And thus it will be as to all finite Increments: But when the Increments become Moments, that is, when a and b are fo far diminifh'd, as to become infinitely lefs than A and B; at the fame time $a b$ will become infinitely lefs than either $a \mathrm{~B}$ or $b \mathrm{~A}$, (for $a \mathrm{~B}$. $a b:$: B. b, and b A. $a b:: \mathrm{A} \cdot a$, and therefore it will vanifh in refpect of them. In which cafe the Moment of the Product or Rectangle will be $a \mathrm{~B}+b \mathrm{~A}$, as before. This perhaps is the more obvious and direct way of proceeding, in the prefent Inquiry; but, as there was room for choice, our Author thought fit to chufe the former way,
as the more elegant, and in which he was under no neceffity of having recourfe to that Principle, that quantities arifing in an Equation, which are infinitely lefs than the others, may be neglected or expunged in comparifon of thofe others. Now to avoid the ufe of this Principle, tho' otherwife a taue one, was all the Artifice ufed on this occafion, which certainly was a very fair and juftifiable one.

I fhall conclude my Obfervations with confidering and obviating the Objections that have been made, to the ufual Method of finding the Increment, Moment, or Fluxion of any indefinite power $x^{\prime \prime}$ of the variable quantity x, by giving that Inveftigation in fuch a manner, as to leave (I think) no room for any juft exceptions to it. And the rather becaufe this is a leading point, and has been ftrangely perverted and mifreprefented.

In order to find the Increment of the variable quantity or power α^{n}, (or rather its relation to the Increment of x, confider'd as given; becaufe Increments and Moments can te known only by comparifon with other Increments and Monsents, as alfo Fluxions by comparifon with other Fluxions;) let us make $x^{n}=y$, and let X and Y be any fynchronous Augments of x and y. Then by the hypothefis we fhall have the Equation $\overline{x+\left.X\right|^{n}}=y+\mathrm{Y}$; for in any Equation the variable Quantities may always be increafed by their fynchronous Augments, and yet the Equation will fill hold good. Then by our Author's famous Binomial Theorem we fhall have $y+Y=x^{n}$ $+n x^{n-1} \mathrm{X}+n \times \frac{n-1}{2} x^{n-2} \mathrm{X}^{2}+n \times \frac{n-1}{2} \times \frac{n-2}{3} x^{n-3} \mathrm{X}^{3}, \& c$. or removing the equal Quantities y and x^{n}, it will be $\mathrm{Y}=n x^{n-x} \mathrm{X}+$ $n \times \frac{n-1}{2} x^{n-2} \mathrm{X}^{2}+n \times \frac{n-1}{2} \times \frac{n-2}{3} x^{n-3} \mathrm{X}^{3}$, \& c . So that when X de notes the given Increment of the variable quantity x, Y will here denote the fynchronous Increment of the indefinite power y or x^{n}; whofe value therefore, in all cafes, may be had from this Series. Now that we may be fure we proceed regularly, we will verify this thus far, by a particular and familiar inftance or two. Suppofe $n=2$, then $Y=2 x \mathrm{X}+\mathrm{X}^{2}$. That is, while x flows or increafes to $x+\mathrm{X}$, x^{2} in the fame time, by its Increment $Y=2 x X+X^{2}$, will increafe to $x^{2}+2 x \mathrm{X}+\mathrm{X}^{2}$, which we otherwife know to be true. Again, fuppore $n=3$, then $Y=3 \cdot x^{2} X+3 x X^{2}+X^{3}$. Or while x in creafes to $x+\mathrm{X}, x^{5}$ by its Increment $\mathrm{Y}=3 x^{2} \mathrm{X}+3 x \mathrm{X}^{2}+\mathrm{X}^{3}$ will increafe to $x^{3}+3 x^{2} \mathrm{X}+3 x \mathrm{X}^{2}+\mathrm{X}^{3}$. And fo in all other particular cafes, whereby we may plainly perceive, that this general Conclufion muft be certain and indubitable.

This Series therefore will be always true, let the Augments X and Y be ever fo great, or ever fo little; for the truth does not at all depend on the circumftance of their magnitude. Nay, when they are infinitely little, or when they become Moments, it muft be true alfo, by virtue of the general Conclufion. But when X and Y are diminifh'd in infinitum, fo as to become at laft infinitely little, the greater powers of X muft needs vanifh firft, as being relatively of an infinitely lefs valce than the fmaller powers. So that when they are all expunged, we fhall neceffarily obtain the Equation $Y=n x^{n-1} X$; where the remaining Terms are likewife infinitely little, and confequently would vanifh, if there were other Terms in the Equation, which were (relatively) infinitely greater than themfelves. But as there are not, we may fecurely retain this Equation, as having an undoubted right fo to do; and efpecially as it gives us an ufeful piece of information, that X and Y , tho' themfelves infinitely little, or vanifhing quantities, yet they vanifh in proportion to each other. as I to $n x^{n-r}$. We have therefore learn'd at laft, that the Moment by which x increafes, or X , is to the contemporary Moment by which x^{n} increafes, or Y, as I is to $n x^{n-1}$. And their Fluxions, or Velocities of increafe, being in the fame proportion as their fynchronous Moments, we fhall have $n x^{n-\mathrm{r}} \dot{x}$ for the Fluxion of x^{n}, when the Fluxion of x is denoted by \dot{x}.

I cannot conceive there can be any pretence to infinuate here, that any unfair artifices, any leger-de-main tricks, or any fhifting of the hypothefis, that have been fo feverely complain'd of, are at all made ufe of in this Invertigation. We have legitimately derived this general Conclufion in finite Quantities, that in all cafes the relation of the Increments will be $\mathrm{Y}=n x^{n-1} \mathrm{X}+n \times \frac{n-1}{2} x^{n-\infty} \mathrm{X}^{1}$, \&cc. of which one particular cafe is, when X and Y are fuppofed continually to decreafe, till they finally terminate in nothing. But by thus continually decreafing, they approach nearer and nearer to the Ratio of 1 to $n x^{n-5}$, which they attain to at the very inftant of the r vanifhing, and not before. This therefore is their ultimate Ratio, the Ratio of their Moments, Fluxions, or Velocities, by which x and x^{n} continually increafe or decreafe. Now to argue from a general Theorem to a particular cafe contain'd under it, is certainly one of the moft legitimate and logical, as well as one of the moft ufual and ufeful ways of arguing, in the whole compafs of the Mathem:ticks. To object here, that after we have made X and Y to ftand for fome quantity, we are not at liberty to make them nothing, or no quantity, or vanißhing quantities, is not an Objection againft the

Method of Fluxions, but againft the common Analyticks. This Method only adopts this way of arguing, as a conftant practice in the vulgar Algebra, and refers us thither for the proof of it. If we have an Equation any how compos'd of the general Numbers a, b, c, Scc. it has always been taught, that we may interpret thefe by any particular Numbers at pleafure, or even by 0 , provided that the Equation, or the Conditions of the Queftion, do not exprefsly require the contrary. For general Numbers, as fuch, may ftand for any definite Numbers in the whole Numerical Scale; which Scale (I think) may be thus commodioufy reprefented, \&c. - $3,-2$, - I, $0,1,2,3,4, \& c$. where all poffible fractional Numbers, intermediate to thefe here exprefs' d, are to be conceived as interpolated. But in this Scale the Term o is as much a Term or Number as any other, and has its analogous properties in common with the reft. We are likewife told, that we may not give fuch values to general Symbols afterwards, as they could not receive at firtt; which if admitted is, I think, nothing to the prefent purpofe. It is always moft eafy and natural, as well as moft regular, inftructive, and elegant, to make our Inquiries as much in general Terms as may be, and to defcend to particular cafes by degrees, when the Problem is nearly brought to a conclufion. But this is a point of convenience only, and not a point of neceflity. Thus in the prefent cafe, inftead of defcending from finite Increments to infinitely little Moments, or vanifhing Quantities, we might begin our Computation with thofe Moments themfelves, and yet we fhould arrive at the fame Conclufions. As a proof of which we may confult our Author's own Demonftration of his Method, in pag. 24. of this Treatife, In fhort, to require this is juft the fame thing as to infift, that a Problem, which naturally belongs to Algebra, fhould be folved by common Arithmetick; which tho' poffible to be done, by purfuing backwards all the fteps of the general procefs, yet would be very troublefome and operofe, and not fo inftructive, or according to the true Rules of Art.

But I am apt to fufpect, that all our doubts and fcruples about Mathematical Inferences and Argumentations, efpecially when we are fatisfied that they have been juftly and legitimately conducted, may be ultimately refolved into a fpecies of infidelity and diftruft. Not in refpect of any implicite faith we ought to repofe on meer human authority, tho' ever fo great, (for that, in Mathematicks, we fhould utterly difclaim,) but in refpect of the Science itfelf. We are bardly brought to believe, that the Science is fo perfectly regular and uni-
form, fo infinitely confiftent, conftant, and accurate, as we fhall really find it to be, when after long experience and reflexion we thall have overcome this prejudice, and fhall learn to purfue it rightly. We do not readily admit, or eafily comprehend, that Quantities have an infinite number of curious and fubtile properties, fome near and obvious, others remote and abftrufe, which are all link'd together by a neceffary connexion, or by a perpetual chain, and are then only difcoverable when regularly and clofely purfued; and require our truft and confidence in the Science, as well as our induftry, application, and obftinate perfeverance, our fagacity and penetration, in order to their being brought into full light. That Nature is ever confiftent with herfelf, and never proceeds in thefe Speculations per faltum, or at random, but is infinitely fcrupulous and folicitous, as we may fay, in adhering to Rule and Analogy. That whenever we make any regular Pofitions, and purfue them through ever fo great a variety of Operations, according to the frict Rules of Art; we mall always proceed through a feries of regular and well-connected tranfmutations, (if we would but attend to 'em,) till at laft we arrive at regular and juft Conclufions. That no properties of Quantity are intirely deftructible, or are totally loft and abolifh'd, even tho' profecuted to infinity itfelf; for if we fuppofe fome Quantities to become infinitely great, or infinitely little, or nothing, or lefs than nothing, yet other Quantities that have a certain relation to them will only undergo proportional, and often finite alterations, will fympathize with them, and conform to 'em in all their changes; and will always preferve their analogical nature, form, or magnitude, which will be faithfully exhibited and difcover'd by the refult. This we may collect from a great variety of Mathematical Speculations, and more particularly when we adapt Geometry to Analyticks, and Curve-lines to Algebraical Equations. That when we purfue general Inquiries, Nature is infinitely prolifick in particulars that will refult from them, whether in a direct fubordination, or whether they branch out collaterally; or even in particular Problems, we may often perceive that thefe are only certain cafes of fomething more general, and may afford good hints and affiftances to a fagacious Analyft, for afcending gradually to higher and higher Difquifitions, which may be profecuted more univerfally than was at firft expected or intended. Thefe are fome of thofe Mathematical Principles, of a higher order, which we find a difficulty to admit, and which we fhall never be fully convinced of, or know the whole ufe of, but from much practice and attentive confideration; but more efpecially by a diligent
perufal, and clofe examination, of this and the other Works of our illuftrious Author. He abounded in thefe fublime views and inquiries, had acquired an accurate and habitual knowledge of all thefe, and of many more general Laws, or Mathematical Principles of a fuperior kind, which may not improperly be call'd The Pbilofophy of 2uantity; and which, aflifted by his great Genius and Sagacity, together with his great natural application, enabled him to become fo compleat a Mafter in the higher Geometry, and particularly in the Art of Invention. This Art, which he poffeft in the greateft perfection imaginable, is indeed the fublimeft, as well as the moft difficult of all Arts, if it properly may be call'd fuch; as not being reducible to any certain Rules, nor can be deliver'd by any Precepts, but is wholly owing to a happy fagacity, or rather to a kind of divine Enthufiafm. To improve Inventions already made, to carry them on, when begun, to farther perfection, is certainly a very ufeful and excellent Talent ; but however is far inferior to the Art of Difcovery, as having a $\pi \tilde{\varepsilon} \varsigma \tilde{\omega}$, or certain data to proceed upon, and where juft method, clofe reafoning, ftrict attention, and the Rules of Analogy, may do very much. But to ftrike out new lights, to adventure where no footfteps had ever been fet before, nullius ante trita folo; this is the nobleft Endowment that a human Mind is capable of, is referved for the chofen few quos Jupiter aquus amavit, and was the peculiar and diftinguifhing Character of our great Mathematical Philofopher. He had acquired a compleat knowledge of the Philofophy of Quantity, or of its moft effential and moft general Laws; had confider'd it in all views, had purfued it through all its difguifes, and had traced it through all its Labyrinths and Receffes; in a word, it may be faid of him not improperly, that he tortured and tormented Quantities all poffible ways, to make them confefs their Secrets, and difcover their Properties.

The Method of Fluxions, as it is here deliver'd in this Treatife, is a very pregnant and remarkable inftance of all thefe particulars. To take a curfory view of which, we may conveniently enough divide it into thefe three parts. The firft will be the Introduction, or the Method of infinite Series. The fecond is the Method of Fluxions, properly fo cali'd. The third is the application of both thefe Methods to fome very general and curious Speculations, chiefly in the Geometry of Curve-lines.

As to the firft, which is the Method of infinite Series, in this the Author opens a new kind of Arithmetick, (new at leart at the time of his writing this,) or rather he vaflly improves the old. For
he extends the received Notation, making it compleatly univerfal, and fhews, that as our common Arithmetick of Integers received a great Improvement by the introduction of decimal Fractions; fo the common Algebra or Analyticks, as an univerfal Arithmetick, ivill receive a like Improvement by the admiffion of his Doctrine of infinite Series, by which the fame analogy will be ftill carry'd on, and farther advanced towards perfection. Then he fhews how all complicate Algebraical Expreffions may be reduced to fuch Series, as will continually converge to the true values of thofe complex quantities, or their Roots, and may therefore be ufed in their ftead : whether thofe quantities are Fractions having multinomial Denominators, which are therefore to be refolved into fimple Terms by a perpetual Divifion ; or whether they are Roots of pure Powers, or of affected Equations, which are therefore to be refolved by a perpetual Extraction. And by the way, he teaches us a very general and commodious Méthod for extracting the Roots of affected Equations in Numbers. And this is chiefly the fubftance of his Method of infinite Series.

The Method of Fluxions comes next to be deliver'd, which indeed is principally intended, and to which the other is only preparatory and fubfervient. Here the Author difplays his whole 1 kill, and fhews the great extent of his Genius. The chief difficulties of this he reduces to the Solution of two Problems, belonging to the abitract or Rational Mechanicks. For the direct Method of Fluxions, as it is now call'd, amounts to this Mechanical Problem, The length of the Space defcribed being continually given, to find the Velocity of the Motion at any time propofed. Alfo the inverfe Method of Fluxions has, for a foundation, the Reverfe of this Problem, which is, The Velocity of the Motion being continually given, to find the Space deforibed at any time propofed. So that upon the compleat Analytical or Geometrical Solution of thefe two Problems, in all their varieties, he builds his whole Method.

His firft Problem, which is, The rclation of the fowing Quantities being given, to determine the relation of their Fluxions, he difpatches very generally. He does not propofe this, as is ufualiy done, A flowing Quantity being given, to find its Fluxion; for this gives us too lax and vague an Idea of the thing, and does not fufficiently fhew. that Comparifon, which is here always to be underftood. Fluents and Fluxions are things of a relative nature, and fuppofe two at leaft; whofe relation or relations fhould always be exprefs'd by Equations. He requires therefore that all fhould be reduced to Equations; by which the relation of the flowing Quantities will be exhibited, and their comparative
comparative magnitudes will be more eafily eftimated; as alfo the comparative magnitudes of their Fluxions. And befides, by this means he has an opportunity of refolving the Problem much more generally than is commonly done. For in the ufual way of taking Fluxions, we are confined to the Indices of the Powers, which are to be made Coefficients; whereas the Problem in its full extent will allow us to take any Arithmetical Progreffions whatever. By this means we may have an infinite variety of Solutions, which tho different in form, will yet all agree in the main; and we may always chufe the fimpleft, or that which will beft ferve the prefent purpofe. He Chews alfo how the given Equation may comprehend feveral variable Quantities, and by that means the Fluxional Equation may be found, notwithftanding any furd quantities that may occur, or even any other quantities that are irreducible, or Geometrically irrational. And all this is derived and demonitrated from the properties of Moments. He does not here proceed to fecond, or higher Orders of Fluxions, for a reafon which will be affign'd in another place.

His next Problem is, An Equation being propofed exbibiting the reIntion of the Fluxions of Quantities, to find the relation of thofe 2uantities, or Fluents, to one anotber; which is the direct Converfe of the foregoing Problem. This indeed is an operofe and difficult Problem, taking it in its full extent; and requires all our Author's 1 kill and addrels; which yet he folves very generally, chiefly by the affiftance of his Method of infinite Series. He firft teaches how we may return from the Fluxional Equation given, to its correfponding finite Fluential or Algebraical Equation, when that can be done.. But when it cannot be done, or when there is no fuch finite Algebraical Equation, as is moft commonly the care, yet however he finds the Ront of that Equation by an infinite converging Series, which anfwers the fame purpofe. And often he hhews how to find the Root, or Fluent required, by an infinite number of fuch Series. His proceffes for extracting thefe Roots are peculiar to himfelf, and always contrived with much fubtilty and ingenuity.

The reft of his Problems are an application or an exemplification of the foregoing. As when he determines the Maxima and Minima of quantities in all cafes. When he fhews the Method of drawing Tangents to Curves, whether Geometrical or Mechanical; or however the nature of the Curve may be defined, or refer'd to right Lines or other Curyes. Then he Chews how to find the Center or Radius of Curvature, of any Curve whatever, and that in a fimple but general manner; which he illuftrates by many curious Examples,
and purfues many other ingenious Problems, that offer themfelves by the way. After which he difcuffes another very fubtile and intirely new Problem about Curves, which is, to determine the quality of the Curvity of any Curve, or how its Curvature varies in its progrefs through the different parts, in refpect of equability or inequability.

He then applies himfelf to confider the Areas of Curves, and hhews us how we may find as many Quadrable Curves as we pleafe, or fuch whofe Areas may be compared with thofe of right-lined Figures. Then he teaches us to find as many Curves as we pleafe, whofe Areas may be compared with that of the Circle, or of the Hyperbola, or of any other Curve that fhall be affign'd; which he extends to Mechanical as well as Geometrical Curves. He then determines the Area in general of any Curve that may be propofed, chiefly by the help of infinite Series; and gives many ufeful Rules for afcertaining the Limits of fuch Areas. And by the way he fquares the Circle and Hyperbola, and applies the Quadrature of this to the conftructing of a Canon of Logarithms. But chiefly he collects very general and ufeful Tables of Quadratures, for readily finding the Areas of Curves, or for comparing them with the Areas of the Conic Sections; which Tables are the fame as thofe he has publifh'd himfelf, in his Treatife of Quadratures. The ufe and application of thefe he fhews in an ample manner, and derives from them many curious Geometrical Conftructions; with their Demonitrations.

Laftly, he applies himfelf to the Rectification of Curves, and fhews us how we may find as many Curves as we pleafe, whofe Curvelines are capable of Rectification; or whofe Curve-lines; as to length, may be compared with the Curye-lines of any Curves, that thall be affign'd. And concludes in general, with rectifying any Curve-lines that may be propofed, either by the affiftance of his Tables of Quadratures, when that can-be done, or however.by infinite Series. And this is chiefly the fubftance of the prefent Work. As to the account that perhaps may be expected, of what I have added in my Annotations; I fhall refer the inquifitive Reader to the Preface, which will go before that part of the Work.

THE

CONTENTS.

THE Introduction, or the Metbod of refolving complex 2 uantities into infinite Series of fimple Terms. pag. I
Prob. I. From the given Fluents to find the Fluxions. - p. 2 I
Prob. 2. From the given Fluxions to find the Fluents. - p. 25
Prob. 3. To determine the Maxima and Minima of Quantities. p. 44
Prob. 4. To draze Tangents to Curves. : P. 46
Prob. 5. To find the Quantity of Curvature in any Curve. P. 59
Prob. 6. To find the Quality of Curvature in any Curve. p. 75
Prob. 7. To find any number of Quadrable Curves. p. 80
Prob. 8. To find Curves whofe Areas may be compared to thofe of the Conic Sections.
p. 8 I

Prob. 9. To find the Quadrature of any Curve affig'd. p. 86
Prob. 10. To find any number of rectifable Curves. p. 124
Prob. II. To find Curves whofe Lines may be compared with any Curvelines affign'd.
p. 129

Prob. 12. To'rectify any Curve-lines afign'd.
\square p. I34

THE

METHOD of FLUXIONS,

AND

I NFINITESERIES.

Introduction: Or, the Refolution of Equations: by Infinite Series.
I. (ay) AVING obferved that mof of our modern Geometricians, neglecting the Synthetical Method of the Ancients; have apply'd themfelves chiefly to the cultivating of the Analytical Art; by the affiftance of which they have been able to overcome fo many and fo great difficulties, that they feem to have exhaufted all the Speculations of Geometry, excepting the Quadrature of Curves; and fome other matters of a like nature, not yet intirely difculs'd: I thought it not amifs, for the fake of young Students in this Science, to compofe the following Treatife, in which I have endeavour'd to enlarge the Boundaries of Analyticks, and to improve the Doctrine of Curve-lines.
2. Since there is a great conformity between the Operations in Species, and the fame Operations in common Numbers; nor do they feem to differ, except in the Characters by which they are re-
prefented, the firft being general and indefinite, and the other definite and particular : I cannot but wonder that no body has thought of accommodating the lately-difcover'd Doctrine of Decimal Fractions in like manner to Species, (unlefs you will except the Quadrature of the Hyberbola by Mr. Nicolas Mercator ;) efpecially fince it might have open'd a way to more abftrufe Difcoveries. But fince this Doctrine of Species, has the fame relation to Algebra, as the Doctrine of Decimal Numbers has to common Arithmetick ; the Operations of Addition, Subtraction, Multiplication, Divifion, and Extraction of Roots, may eafily be learned from thence, if the Learner be but fkill'd in Decimal Arithmetick, and the Vulgar Algebra, and obferves the correfpondence that obtains between Decimal Fractions and Algebraick Terms infinitely continued. For as in Numbers, the Places towards the right-hand continually decreafe in a Decimal or Subdecuple Proportion; fo it is in Species refpectively, when the Terms are difpofed, (as is often enjoin'd in what follows,) in an uniform Progreffion infinitely continued, according to the Order of the Dimenfions of any Numerator or Denominator. And as the convenience of Decimals is this, that all vulgar Fractions and Radicals, being reduced to them, in fome meafure acquire the nature of Integers, and may be managed as fuch; fo it is a convenience attending infinite Series in Species, that all kinds of complicate Terms, (fuch as Fractions whofe Denominators are compound Quantities, the Roots of compound Quantities, or of affected Equations, and the like,) may be reduced to the Clafs of fimple Quantities; that is, to an infinite Series of Fractions, whofe Numerators and Denominators are fimple Terms; which will no longer labour under thofe difficulties, that in the other form feem'd almoft infuperable. Firft therefore I fhall fhew how there Reductions are to be perform'd, or how any compound Quantities may be reduced to fuch fimple Terms, efpecially when the Methods of computing are not obvious. Then I fhall apply this Analyfis to the Solution of Problems.
3. Reduction by Divifion and Extraction of Roots will be plain from the following Examples, when you compare like Methods, of Operation in Decimal and in Specious Arithmetick.

Examples of Reduction by Divifon.

4. The Fraction $\frac{a a}{b+x}$ being proposed, divide $a a$ by $b+x$ in the following manner:

$$
\begin{aligned}
& b+x) a a+0\left(\frac{a a}{b}-\frac{a a x}{b 2}+\frac{a a x^{2}}{b!}=\frac{a a x^{3}}{b i}+\frac{a a x^{4}}{b i}, \& c .\right. \\
& \frac{a a+\frac{a a x}{b}}{0-\frac{a a x}{b}}+0 \\
& =\frac{\frac{a a x}{b}-\frac{a a x^{2}}{b^{2}}}{0+\frac{a^{3} x^{2}}{b^{2}}+0} \\
& \frac{+\frac{a^{2} x^{2}}{b^{2}}+\frac{a^{2} x^{5}}{b^{3}}}{0-\frac{a^{2} x^{3}}{b^{3}}+0} \\
& \frac{-\frac{a^{2} x^{3}}{b^{3}}-\frac{a^{2} x^{4}}{b^{4}}}{0+\frac{a^{2} x^{4}}{b^{4}}} \text { dc. }
\end{aligned}
$$

The Quotient therefore is $\frac{a a}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}-\frac{a^{2} x^{3}}{b^{4}}+\frac{a^{2} x^{4}}{b^{8}}, \&<c$ which Series, being infinitely continued, will be equivalent to $\frac{a a}{b+x}$. Or making x the frt Term of the Divifor, in this manner, $x+b) a a+0$ (the Quotient will be $\frac{a a}{x}-\frac{a a b}{x^{2}}+\frac{a a b^{2}}{x^{3}}-\frac{a^{2} b^{3}}{x^{4}}$, 8 c , found as by the foregoing Process.
5. In like manner the Fraction $\frac{1}{1+x x}$ will be reduced to $8-x^{6}+x^{4}-x^{6}+x^{8}, \& \mathrm{c}$. or to $x^{-2}-x^{-4}+x^{6}-x^{-8}, \& c$.
6. And the Fraction $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1+x^{\frac{1}{2}}-3 x}$ will be reduced to $2 x^{\frac{1}{2}}-2 x$ $+7 x^{\frac{3}{2}}-13 x^{2}+34 x^{\frac{5}{2}} \stackrel{1}{2}_{8}^{\frac{1}{8} \mathrm{c} \cdot x^{\frac{2}{2}}}$
7. Here it will be proper to obferve, that I make use of x^{-8}, $x^{-3}, x^{-3}, x^{-4}, \& c$. for $\frac{x}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}} \frac{1}{x^{4}}$, \&c. of $x^{\frac{1}{2}}, x^{\frac{3}{2}}, x^{\frac{5}{2}}, x^{\frac{2}{3}}, x^{\frac{2}{7}}, \& \mathrm{Ec}$. for $\sqrt{ } x, \sqrt{x^{3}}, \sqrt{x^{\prime 3}}, \sqrt[3]{x}, \sqrt[3]{x^{2}}, \& c$. and of $x^{-\frac{x}{2}}, x^{-\frac{2}{3}}, x^{-\frac{1}{4}}, \& \mathrm{c}$, for $\frac{x}{\sqrt{x}}, \frac{1}{\sqrt[3]{2}=2}, \frac{1}{\sqrt{x}}$, Acc. And this by the Rule of Analogy, as may be apprehended from foch Geometrical Progreffions as there; $x^{3}, x^{\frac{5}{2}}$, $x^{2}, x^{\frac{3}{2}}, x, x^{\frac{1}{2}}, x^{0}$ (or I,) $x^{-\frac{1}{2}}, x^{-8}, x^{-\frac{-3}{2}}, x^{-3}, \& c$.

$$
\text { B } 2
$$

8.
9. In the fame manner for $\frac{a a}{x}-\frac{a a b}{x^{2}}+\frac{a a b{ }^{2}}{x^{3}}$, \&c. May be wrote $a^{2} x^{-1}-a^{2} b x^{-2}+a^{2} b^{2} x^{-3} ; 8 c$.
10. And thus inftead of $\sqrt{a a-x x}$ may be wrote $\overline{a a-x x^{\frac{1}{2}}}$; and $\overline{a a-\left.x x\right|^{2}}$ inftead of the Square of $a a-x x$; and $\frac{\overline{a b}-\frac{1}{b y+y}}{b y+}$ inftead of $\sqrt[3]{\frac{a}{b 2}-y^{3}}$: And the like of others.
11. So that we may not improperly diftinguifh Powers into Affirmative and Negative, Integral and Fractional.

Examples of Reduction by Extraction of Roots.

11. The Quantity $a a+x x$ being propofed, you may thus extract its Square-Koot.
$a a+x x\left(a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}+\frac{7 x^{10}}{256 a^{9}}-\frac{21 x^{12}}{1024^{a^{12}}}\right) \& \mathrm{c}_{0}$
$\frac{a a}{0+x x}$
$\frac{+x x+\frac{x^{4}}{4 a^{2}}}{-\frac{x^{4}}{4 a^{2}}}$
$\frac{-\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{x^{8}}{64 a^{6}}}{+\frac{x^{6}}{8 a^{4}}-\frac{x^{8}}{64 a^{6}}}$
$\frac{+\frac{x^{6}}{8 a^{4}}+\frac{x^{8}}{10 a^{6}}-\frac{x^{10}}{64 a^{8}}+\frac{x^{38}}{256 a^{10}}}{-\frac{5 x^{8}}{64 a^{6}}+\frac{x^{10}}{64 a^{8}}-\frac{x^{12}}{256 a^{10}}}$ (

$\frac{+\frac{7 x^{10}}{128 a^{8}}+\frac{7 x^{12}}{25 a^{10}}}{-\frac{21 x^{12}}{512 a^{10}}}, \& c$.
So that the Root is found to be $a+\frac{x^{3}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{3}}$ dc. Where it may be obferved, that towards the end of the Operation I neglect all thofe Terms, whofe Dimenfions would exceed the Dimenfions of the laft Term, to which I intend only to continue the Root, fuppofe to $\frac{x^{12}}{a^{12}}$.
12. Alfo the Order of the Terms may be inverted in this manner $x x+a a$, in which cafe the Root will be found to be $x+\frac{a a}{2 x}-\frac{a^{4}}{8 x^{3}}+\frac{a^{6}}{10 x^{5}}-\frac{5^{8}}{128 x^{7}}$ \&c.
13. Thus the Root of $a a-x x$ is $a-\frac{x x}{2 a}-\frac{x^{4}}{8 a^{3}}-\frac{x^{6}}{10 a^{5}} 8 z c$.
14. The Root of $x-x x$ is $x^{\frac{1}{2}}-\frac{1}{2} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{5}{2}}-\frac{{ }^{\frac{1}{5}}}{} x^{\frac{7}{2}}, ~ \& c c$.
15. Of $a a+b x-x x$ is $a+\frac{b x}{2 a}-\frac{x x}{2 a}-\frac{b^{2} x^{2}}{8 a^{3}}, 8 x c$.
16. And $\sqrt{\frac{1}{1-6 x x}}$ is $\frac{1+\frac{7}{2} a x^{2}-\frac{1}{5} a^{2} x^{4}+\frac{7}{1} a^{3} x^{6}, 8 \mathrm{cc}}{1-\frac{1}{2} b x^{2}-\frac{1}{8} b^{2} x^{4}-\frac{1}{1} b^{3} x^{6}, 8 \mathrm{cc}}$. and moreover by actually dividing, it becomes

$$
\begin{aligned}
& 1+\frac{8}{2} b x^{2}+\frac{3}{5} b^{2} x^{4}+\frac{5}{5} b^{3} x^{6}, 8 c c . \\
& +\frac{1}{2} a+\frac{3}{4} a b+\frac{3}{10} a b^{2} \\
& \text { - } \frac{1}{8} a^{2}-\frac{1}{4} a^{2} a^{2} b \\
& +\frac{2}{2 \pi} a^{3}
\end{aligned}
$$

17. But thefe Operations, by due preparation, may very often be abbreviated; as in the foregoing Example to find $\sqrt{\frac{1+a x x}{1-b x x}}$, if the Form of the Numerator and Denominator had not been the fame, I might have multiply'd each by $\sqrt{1-6 x x}$, which would have produced $\frac{\sqrt{1-b x^{2}-a b x^{4}}}{1-b x x}$, and the reft of the work might have been performed by extracting the Root of the Numerator only, and then dividing by the Denominator.
18. From hence I imagine it will fufficiently appear, by what means any other Roots may be extracted, and how any compound Quantities, however entangled with Radicals or Denominators, (fuch as $\left.x^{5}+\frac{\sqrt{x-\sqrt{1-x^{x}}}}{\sqrt[3]{a x_{x}+x^{3}}}-\frac{\sqrt[5]{x^{3}+2 x^{5}-x^{\frac{3}{2}}}}{\sqrt[3]{x+x x^{2}}-\sqrt{2 x-x^{\frac{2}{3}}}}\right)$ may be reduced to infinite Series confifting of fimple Terms.

Of the Reduction of affected Equations.

19. As to affected Equations, we muft be fomething more particular in explaining how their Roots are to be reduced to fuch Series as thefe ; becaufe their Doctrine in Numbers, as hitherto deliver'd by Mathematicians, is very perplexed, and incumber'd with fuperfluous Operations, fo as not to afford proper Specimens for performing the Work in Species. I fhall therefore firft fhew how the

Refolution of affected Equations may be compendiounly perform'd in Numbers, and then I fhall apply the fame to Species.
20. Let this Equation $y:-2 y-5=0$ be propofed to be refolved, and let 2 be a Number (any how found) which differs from the true Root lefs than by a tenth part of itfelf. Then I make $2+p=y$, and fubftitute $2+p$ for y in the given Equation, by which is produced a new Equation $p^{3}+6 p^{2}+10 p-1=0$, whofe Root is to be fought for, that it may be added to the Quote. Thus rejecting $p^{3}+6 p^{2}$ becaufe of its fmallnefs, the remaining Equation $10 p-1=0$, or $p=0,1$, will approach very near to the truth. Therefore I write this in the Quote, and fuppofe $0,1+q=p$, and fubstitete this fictitious Value of p as before, which produces $q^{3}+6,3 q^{2}+11,23 q+0,061=0$. And fince $11,23 q+0,061=0$ is near the truth, or $q=-0,0054$ nearly, (that is, dividing 0,06 I by Ir,23, till fo many Figures arife as there are places between the firft Figures of this, and of the principal Quote exclufively, as here there are two places between 2 and 0,005) I write - 0,0054 in the lower part of the Quote, as being negative ; and fuppofing - $0,0054+r=q$, I fubftitute this as before. And thus I continue the Operation as far as I pleafe, in the manner of the following Diagram:

$j \leq-2 y-5=0$	$\begin{aligned} & \frac{+2,10000000}{\frac{0,00 ; 44852}{+2,09455148}, \& c \cdot=y} . \end{aligned}$
$\begin{array}{ll} 2+p=y . & +y^{3} \\ & -2 y \\ & 5 \end{array}$	$\begin{aligned} & +8+12 p+6 p^{2}+p^{3} \\ & -4-2 p \\ & -5 \end{aligned}$
The Sum	$-1+10 p+6 p^{2}+p^{3}$
$\begin{aligned} 0,1+q=p . & +1^{3} \\ & +61^{2} \\ & +10 p \end{aligned}$	$\begin{aligned} & +0,001+0,03 q+0,3 q^{2}+q^{3} \\ & +0,06+1,2+6, \\ & +1,+10, \\ & -1, \end{aligned}$
1 he sum	- $0,061+11,23 q+6,3 q^{2}+q^{3}$
$\begin{aligned} &-0,005 t+r=9 . \\ &+ 93 \\ &+11,239 \\ &+ 0,061 \end{aligned}$	$\begin{aligned} & -0,000000187464+0,000 \not \theta_{8}^{2} 74 \delta^{2} r-\varnothing, \varnothing \pm 621^{2}+r^{3} \\ & +0,00018378 \% \\ & -0,060642 \\ & +0,061 \end{aligned}$
The Sum	$\pm 0,0005416+11,162 r$
-0,0000+852+s=r.	

21. But the Work may be much abbreviated towards the end by this Method, efpecially in Equations of many Dimenfions. Having firft determin'd how far you intend to extract the Root, count fo many places after the firft Figure of the Coifficient of the laft Term but one, of the Equations that refult on the right fide of the Diagram, as there remain places to be fill'd up in the Quote, and reject the Decimals that follow. But in the laft Term the Decimals may be neglected, after fo many more places as are the decimal places that are fill'd up in the Quote. And in the antepenultimate Term reject all that are after fo many fewer places. And fo on, by proceeding Arithmetically, according to that Interval of places: Or, which is the fame thing, you may cut off every where fo many Figures as in the penultimate Term, fo that their loweft places may be in Arithmetical Progreffion, according to the Series of the Terms, or are to be fuppos'd to be fupply'd with Cyphers, when it happens otherwife. Thus in the prefent Example, if I defired to continue the Quote no farther than to the eighth place of Decimals, when I fubftituted $0,0054+r$ for q, where four decimal places are compleated in the Quote, and as many remain to be compleated, I might have omitted the Figures in the five inferior places, which therefore I have mark'd or cancell'd by little Lines drawn through them ; and indeed I might alfo have omitted the firt Term r^{3}, although its Coefficient be 0,99999 . Thofe Figures therefore being expunged, for the following Operation there arifes the Sum $0,0005416+11,162 r_{3}$, which by Divifion, continued as far as the Term prefrribed, gives - 0,00004852 for r, which compleats the Quote to the Period required. Then fubtracting the negative part of the Quote from the affirmative part, there arifes 2,09455148 for the Root of the propofed Equation.
22. It may likewife be obferved, that at the beginning of the Work, if I had doubted whether $0,1+p$ was a fufficient Approximation to the Root, inftead of $10 p-1=0$, I might have fuppos'd that $6 p^{2}+10 p-1=0$, and fo have wrote the firft Figure of its Root in the Quote, as being nearer to nothing. And in this manner it may be convenient to find the fecond, or even the third Figure of the Quote, when in the fecondary Equation, about which you are converfant, the Square of the Coefficient of the penultimate Term is not ten times greater than the Product of the laft Term multiply'd into the Coefficient of the antepenultimate Term. And indeed you will often fave fome pains, efpecially in Equations of many Dimenfions, if you feek for all the Figures
to be added to the Quote in this manner; that is, if you extract the leffer Root out of the three laft Terms of its fecondary Equation: For thus you will obtain, at every time, as many Figures again in the Quote.
23. And now from the Refolution of numeral Equations, I hall. proceed to explain the like Operations in Species; concerning which, it is neceffary to obferve what follows.
24. Firft, that fome one of the fpecious or literal Coefficients, if there are more than one, fhould be diftinguifh'd from the reft, which either is, or may be fuppos'd to be, much the leaft or greateft of all, or neareft to a given Quantity. The reafon of which is, that becaufe of its Dimenfions continually increafing in the Numerators, or the'Denominators of the Terms of the Quote, thofe Terms may grow lefs and lefs, and therefore the Quote may conftantly approach to the Root required ; as may appear from what is faid before of the Species x, in the Examples of Reduction by Divifion and Extraction of Roots. And for this Species, in what follows, I fhall generally make ufe of x or z; as alfo I thall ufe $y, p, q, r, s, \& c$. for the Radical Species to be extracted.
25. Secondly, when any complex Fractions, or furd Quantities, happen to occur in the propofed Equation, or to arife afterwards in the Procefs, they ought to be removed by fuch Methods as are fufficiently known to Analyfts. As if we fhould have $y^{3}+\frac{b b}{b-x^{2}} y^{2}-x^{3}=0$, multiply by $b-x$, and from the Product $b y^{3}-x y^{3}+b^{2} y^{2}-b x^{3}+x^{4}=0$ extract the Root y. Or we might fuppofe $y \times \overline{b-x}=v$, and then writing $\frac{v}{b-x}$ for y, we fhould have $v^{3}+b^{2} v^{2}-b^{3} x^{3}+3^{b^{2} x^{4}-3^{b x^{5}}+x^{6}=0, ~}$ whence extracting the Root v, we might divide the Quote by $b-\dot{x}$, in order to obtain y. Alfo if the Equation $y^{3}-x y^{\frac{x}{2}}+x^{\frac{4}{3}}=0$ were propofed, we might put $y^{\frac{r}{2}}=v$, and $x^{\frac{1}{3}}=z$, and fo writing vv for y, and z^{3} for x, there will arife $v^{6}-z^{3} v+z^{4}=0$; which Equation being refolved, y and x may be reflored. "For the Root will be found $v=z+z^{3}+6 z^{5}$, \&cc. and reftoring y and x, we have $y^{\frac{2}{2}}=x^{\frac{1}{3}}+x+6 x^{\frac{5}{3}}, 8 \mathrm{c}$. then fquaring, $y=x^{\frac{2}{3}}+2 x^{\frac{4}{3}}+13 x^{2}$; \&ec.
26. After the fame manner if there fhould be found negative Dimenfions of x and y, they may be removed by multiplying by the fame x and y. As if we had the Equation $x^{3}+3 x^{2} y^{-1}-2 x^{-1}-16 y^{-3}=0$, multiply by x and y^{3}, and there would arife $x^{4} y^{3}+3 x^{3} y^{2}-2 y^{0}$ $=16 x=0$. And if the Equation were $x=\frac{a a}{y}-\frac{2 a^{3}}{y^{2}}+\frac{3 a^{4}}{y^{3}}$
by multiplying into y^{3} there would arife $x y^{3}=a^{2} y^{2}-2 a^{3} y+3 a^{4}$. And fo of others.
27. Thirdly, when the Equation is thus prepared, the work begins by finding the firft Term of the Quote ; concerning which, as alfo for finding the following Terms, we have this general Rule, when the indefinite Species (x or z) is fuppofed to be fmall; to which Cafe the other two Cafes are reducible.
28. Of all the Terms, in which the Radical Species (y, p, q, or $r, \& c$. .) is not found, chufe the loweft in refpect of the Dimentions of the indefinite Species (x or z, \&xc.) then chufe another Term in which that Radical Species is found, fuch as that the Progreffion of the Dimenfions of each of the fore-mentioned Species, being con-tinued from the Term firft affumed to this Term, may defcend as much as may be, or afcend as little as may be. And if there are any other Terms, whofe Dimenfions may fall in with this Progreffion continued at pleafure, they muft be taken in likewife. Laftly, from thefe Terms thus felected, and made equal to nothing, find the Value of the faid Radical Species, and write it in the Quote.
29. But that this Rule may be more clearly apprehended, I thall explain it farther by help of the following Diagram. Making a right Angle BAC , divide its fides AB, AC, into equal parts, and raifing Perpendiculars, diftribute the Angular Space into equal Squares or Parallelograms, which you may conceive to be denominated from the Dimenfions of the Species x and y, as they are here infcribed. Then, when any Equation is propofed, mark fuch of the Parallelograms as correfpond to all its Terms, and let a Ruler be apply'd to two, or perhaps more, of the Parallelograms fo mark'd, of which let one
 be the lowert in the left-hand Column at $A B$, the other touching the Ruler towards the right-hand; and let all the reft, not totiching the Ruler, lie above it. Then felect thofe Terms of the Equation which are reprefented by the Parallelograms that touch the Ruler, and from them find the Quantity to be put in the Quote.
30. Thus to extract the Root y out of the Equation $y^{6}-5 x y^{5}+$ $\frac{x^{3}}{a} y^{4}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}+b^{2} x^{4}=0$, I mark the Parallelograms belongC
ing to the Terms of this Equation with the Mark *, as you fee here done. Then I apply the Ruler DE to the lower of the Parallelograms mark'd in the left-hand Column, and I make it turn round towards the right-hand from the lower to the upper, till it begins in like manner to touch another,
 or perhaps more, of the Parallelograms that are mark'd; and I fee that the places fo touch'd belong to $x^{3}, x^{2} y^{2}$, and y^{6}. Therefore from the Terms $y^{6}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}$, as if equal to nothing, (and moreover, if you pleafe, reduced to $v^{6}-7 v^{2}+6=0$, by making $y=v \sqrt{a x}$, I feek the Value of y, and find it to be four-fold, $+\sqrt{ } a x,-\sqrt{ } a x,+\sqrt{ } 2 a x$, and $-\sqrt{ } 2 a x$, of which I may take any one for the initial Term of the Quote, according as I defign to extract this or that Root of the given Equation.
31. Thus having the Equation $y^{5}-b y^{2}+9 b x^{2}-x^{3}=0$, I chure the Terms - by $+96 x^{2}$, and thence I obtain $+3 x$ for the initial Term of the Quote.
32. And having $y^{3}+a x y+a a y-x^{3}-2 a^{3}=0, I$ make choice of $y^{3}+a^{2} y-2 a^{3}$, and its Root $+a$ I write in the Quote.
33. Alfo having $x^{2} y^{5}-3^{4} x y^{2}-c^{5} x^{2}+c^{7}=0$, I felect $x^{2} y^{5}+c^{7}$, which gives $-\sqrt[5]{\frac{c}{x^{2}}}$ for the firf Term of the Quote. And the like of others.
34. But when this Term is found, if its Power fould happen to be negative, I deprefs the Equation by the fame Power of the indefinite Species, that there may be no need of deprefling it in the Refolution; and befides, that the Rule hereafter deliver'd, for the fuppreffion of fuperfluous Terms, may be conveniently apply'd. Thus the Equation $8 z^{6} y^{3}+a z^{6} y^{2}-27 a^{9}=0$ being propofed, whofe
 come $8 z^{4} y^{5}+a z^{4} y^{2}-27 a^{9} z^{-2}=0$, before I attempt the Refolution.
35. The fubfequent Terms of the Quotes are derived by the fame Method, in the Progrefs of the Work, from their feveral fecondary Equations, but commonly with lefs trouble. For the whole affair is perform'd by dividing the loweft of the Terms affected with the indefinitely finall Species, ($x, x^{2}, x^{3}, \varepsilon x c$.) without the Radical Species, $(p, q, r, \& c$.) by the Quantity with which that radical Species
of one Dimenfion only is affected, without the other indefinite Species, and by writing the Refult in the Quote. So in the following Example, the Terms $\frac{x}{4}, \frac{x x}{6+a}, \frac{131 x^{3} 3}{512 a^{2}}$, \&cc. are produced by dividing $a^{2} x, \frac{\frac{1}{5}}{5} a x^{2}, \frac{1}{8} \frac{3}{2} \frac{7}{8}, x^{3}$, \&c. by $4 a a$.
36. Thefe things being premifed, it remains now to exhibit the Praxis of Refolution. Therefore let the Equation $y^{3}+1-a^{2} y+a x y-$ $2 a^{3}-x^{3}=0$ be propofed to be refolved. And from its Terms $y^{3}+a^{2} y-2 a^{3}=0$, being a fictitious Equation, by the third of the foregoing Premifes, I obtain $y-a=0$, and therefore I write $+a$ in the Quote. Then becaufe $+a$ is not the compleat Valuc of y, I put $a+p=y$, and inftead of y, in the Terms of the Equation written in the Margin, I fubftitute $a+p$, and the Terms refulting $\left(p^{3}+\right.$ $3 a p^{2}+a x p, \& x c$.) I again write in the Margin; from which again, according to the third of the Premifes, I felect the Terms $+4 a^{2} p$ $+a^{2} x=0$ for a fictitious Equation, which giving $f=-\frac{1}{4} x$, I write - $\frac{1}{4} x$ in the Quote. Then becaufe - $\frac{1}{4} x$ is not the accurate Value of p, I put $-\frac{1}{4} x+q=p$, and in the marginal Terms for p I fubntitute - $\frac{1}{4} x+q$, and the refulting Terms ($q^{3}-\frac{3}{4} x q^{2}+3 a q^{2}, \&<c$.) I again write in the Margin, out of which, according to the foregoing Rule, I again felect the Terms $4 a^{2} q-\frac{\mathrm{T}}{\mathrm{T}} \sigma a x^{2}=0$ for a fictitious Equation, which giving $q=\frac{x x}{64 a}$, I write $\frac{x \cdot x}{64 a}$ in the Quote. Again, fince $\frac{x x}{6+a}$ is not the accurate Value of q, I make $\frac{z x}{6+a}+r=q$, and inftead of q I fubfitute $\frac{x x}{64^{a}}-1-r$ in the marginal Terms. And thus I continue the Procefs at pleafure, as the following Diagrans cxhibits to view.

37. If it were required to continue the Quote only to a certain Period, that x, for inftance, in the laft Term fhould not afcend beyond a given Dimenfion; as I fubffitute the Terms, I omit fuch as I forefee will be of no ufe. For which this is the Rule, that after the firf Term refulting in the collateral Margin from every Quantity, fo many Terms are to be added to the right-hand, as the Index of the higheft Power required in the Quote exceeds the Index. of that firf refulting Term.
38. As in the prefent Example, if I defired that the Quote, (or the Species A in the Quote,) fhould afcend no higher than to four Dimenfions, I omit all the Terms after x^{4}, and put only one after x^{3}. Therefore

Therefore the Terms after the Mark * are to be conceived to be expunged. And thus the Work being continued till at laft we come to the Terms $\frac{15 \times x^{4}}{4095 z}-\frac{13 r x^{3}}{128}+4 a^{2} r-\frac{1}{2} a x r$, in which p, q, r, or $s, \& x c$. reprefenting the Supplement of the Root to be extracted, are only of one Dimenfion; we may find fo many Terms by Divifion, $\left(+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{163^{8} 4^{3}}\right)$ as we fhall fee wanting to compleat the Quote. So that at laft we thall have $y=a-\frac{x}{4} x+\frac{x x}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{163^{84 a^{3}}} \delta \mathrm{xc}$. 39. For the fake of farther Illuftration, I fhall propofe another Example to bc refolved. From the Equation $\frac{1}{3} y^{\prime \prime}-\frac{1}{4} y^{4}+\frac{1}{3} y^{3}-\frac{1}{2} y^{2}$. $+y-z=0$, let the Quote be found only to the fifth Dimenfion, and the fuperfluous Terms be rejected after the Mark, ©oc.

$\frac{3}{5} y^{5}-\frac{1}{4} y^{4}+\frac{1}{3} y^{3}-\frac{1}{2} y^{2}+y-z=0, \quad y=z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{1}{1} \frac{1}{4} z^{4}+1_{1} \frac{1}{2} z^{2} z^{5}, \& c$.		
$z+p=y .$	$\begin{aligned} & +\frac{1}{3} y^{5} \\ & -\frac{1}{4} y^{4} \\ & +\frac{1}{3} y^{3} \\ & -\frac{1}{2} y^{2} \\ & +y \\ & -z \end{aligned}$	$\begin{aligned} & +\frac{1}{5} z^{5}, \& c . \\ & -\frac{1}{4} z^{4}-z^{3} p, \delta c . \\ & +\frac{1}{3} z^{3}+z^{2} p+z p^{2}, \& c . \\ & -\frac{1}{2} z^{2}-z p-\frac{1}{2} p^{2} \\ & +z+p \\ & -z+1 \end{aligned}$
$\frac{1}{2} z_{-}^{2}+q=p$	$\begin{aligned} & +z p^{2} \\ & -\frac{1}{2} p^{2} \\ & -z^{3} p \\ & +z^{2} p \\ & -z p \\ & +p \\ & +\frac{1}{3} z^{3} \\ & -\frac{1}{4} z^{4} \\ & +\frac{1}{3} z^{3} \end{aligned}$	$\begin{aligned} & +\frac{1}{4} z^{5}, \& c_{0} \\ & -\frac{1}{8} z^{4}-\frac{1}{2} z^{2} q, \& c . \\ & -\frac{1}{2} z^{5}, \& z . \\ & +\frac{1}{2} z^{4}+z^{2} q \\ & -\frac{1}{2} z^{3}-z q \\ & +\frac{1}{2} z^{2}+q \\ & +\frac{1}{5} z^{3} \\ & -\frac{1}{4} z^{4} \\ & +\frac{1}{3} z^{3} \\ & -\frac{1}{2} z^{2} \end{aligned}$
1-z+1-2 z^{2}) $\frac{1}{6} z^{3}-\frac{1}{8} z^{4}+\frac{1}{z_{0}} z^{5}\left(\frac{1}{6} z^{5}+\frac{1}{2} \frac{1}{4} z^{4}+\frac{1}{1} \frac{1}{2} z^{5}\right.$		

40. And thus if we propore the Equation $\left.\frac{6}{2} \frac{6}{8} \frac{3}{6}\right)^{113}+\frac{3}{2} \frac{5}{5} 5 y^{19}+$ $\frac{5}{1} \frac{5}{2} y^{7}+\frac{3}{4} \frac{3}{0} y^{5}+\frac{1}{6} y^{3}+y-z=0$, to be refolved only to the ninth Dimenfion of the Quote ; before the Work begins we may reject the Term $\frac{6}{2} \frac{3}{5} \frac{1}{2} y^{1 r}$; then as we operate wc may reject all the Terms beyond z^{9}, beyond z^{7} we may admit but one, and two only after 2^{3};
z^{5}; becaufe we may obferve, that the Quote ought always to afcend by the Interval of two Units, in this manner, $\approx, z^{3}, z^{5}, 8 x c$. Then

4I. And hence an Artifice is difooverd, by which Equations, tho' affected in infinitum, and confining of an infinite number of Terms, may however be refolved. And that is, before the Work begins all the Terms are to be rejected, in which the Dimenfion of the indefinitely fmall Species, not affected by the radical Species, exceeds the greatef Dimenfion required in the Quote; or fiom which, by fubftituting inftead of the radical Species, the firft Term of the Quote found by the Parallelogram as before, none but fuch exceeding Terms can arife. Thus in the laft Example I fhould have omitted all the Terms beyond $y^{\prime \prime}$, though they went on ad infinitum. And fo in this Equation

$$
0=\left\{\begin{array}{l}
-8+z^{2}-4 z^{4}+9 z^{6}-16 z^{8}, \text { scc. } \\
+y \text { in } z^{2}-2 z^{4}+3 z^{6}-4 z^{3}, \\
-y^{2} \text { in } z^{2}-z^{4}+z^{6}-z^{8}, \\
+y^{5} \text { in } z^{2}-\frac{1}{2} z^{4}+\frac{1}{3} z^{6}-\frac{x}{4} z^{8}, \\
\text { scc. }
\end{array}\right.
$$

that the Cubick Root may be extracted only to four Dimenfions of z, I omit all the Terms in infinitum beyond $+y^{3}$ in $z^{2}-\frac{1}{2} z^{4}+\frac{1}{3} z^{6}$, and all beyond $-y^{2}$ in $\approx^{2}-z^{4}+z^{6}$, and all beyond $+y$ in $\widetilde{z}^{2}-2 z^{4}$, and beyond $-8+z^{2}-4 z^{4}$. And therefore I aflume this Equation only to be refolved, $\frac{5}{3} z^{6} y^{3}-\frac{1}{2} z^{4} y^{5}+z^{2} y^{3}--z^{6} y^{2}+z^{4} j^{2}-z^{2} y^{2}-2 z^{4} y$ $+z^{2} y-4 z^{4}+z^{2}-3=0$. Becaufe $2 z^{-\frac{\pi}{3}}$, (the firf Term of the Quote,) being fubftituted inftead of y in the reft of the Equation deprefs'd by $\mathbf{z}^{\frac{2}{3}}$, gives every where more than four Dimenfions.
42. What I have faid of higher Equations may alfo be apply'd to Quadraticks. As if I defired the Root of this Equation

$$
0=\left\{\begin{array}{l}
y^{2} \\
y \operatorname{in} a+x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{3}} \text { 效 } \\
+\frac{x^{4}}{4 a^{2}}
\end{array}\right.
$$

as far as the Period x^{6}, I omit all the Terms in infinitum, beyond -y in $a+x+\frac{x^{2}}{a}$, and affume only this Equation, $y^{2}-a y-x y-$ $\frac{x^{2}}{a} y+\frac{x^{4}}{44^{4}}=0$. This I refolve either in the ufual manner, by making
$y=\frac{x}{2} a+\frac{1}{2} x+\frac{x^{2}}{2 a}-\sqrt{\frac{1}{4} a^{2}+\frac{1}{2} a x+\frac{3}{4} x^{2}+\frac{x^{3}}{2 a}}$; or more expeditioully by the Method of affected Equations deliver'd before, by which we Chall have $y=\frac{x^{4}}{44^{3}}-\frac{x^{5}}{4^{4}} *$, where the laft Term required vanifhes, or becomes equal to nothing.
43. Now after that Roots are extracted to a convenient Period, they may fometimes be continued at pleafure, only by obferving the Analogy of the Series. So you may for ever continue this $z+\frac{1}{2} z^{2}$. $+\frac{1}{6} z^{3}+\frac{1}{2} \frac{1}{4} z^{4}+\tau^{\frac{1}{2}} \sigma^{5} z^{5}, \& x$. (which is the Root of the infinite Equation $z=y+\frac{1}{2} y^{2}+\frac{1}{3} y^{3}+\frac{x}{4} y^{4}, \& z c$.) by dividing the laft Term by thefe Numbers in order $2,3,4,5,6,8 c$. And this, $z-\frac{1}{6} z^{3}+r^{\frac{3}{2}} 0^{5}-$
 bers $2 \times 3,4 \times 5,6 \times 7,8 \times 9,8 c$. Again, the Series $a+\frac{\lambda^{2}}{2 a}-\frac{\lambda^{4}}{8 a^{3}}+\frac{\lambda^{6}}{16 a^{5}}$ $-\frac{5 x^{8}}{128 a^{2}}$, \&c. may be continued at pleafure, by multiplying the Terms refpectively by thefe Fractions, $\frac{1}{2},-\frac{1}{4},-\frac{3}{6},-\frac{5}{8},-\frac{7}{2}$, Eic. And fo of others.
44. But in difcovering the firft Term of the Quote, and fometimes of the fecond or third, there may fill remain a difficulty to be overcome. For its Value, fought for as before, may happen to be furd, or the inextricable Root of an high affected Equation. Which when it happens, provided it be not alfo impoffible, you may reprefent it by fome Letter, and then proceed as if it were known. As in the Example $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$: If the Root of this Equation $y^{3}+a^{2} y-2 a^{3}=0$, had been furd, or unknown, I fhould have put any Letter b for it, and then have perform'd the Refolution as follows, fuppofe the Quote found only to the third Dimenfion.

$\begin{gathered} y^{3}+a a y+a x y-2 a^{3}-x^{3}=0 \text {. Make } a^{2}+3 b^{2}=c^{2} \text {, then } \\ y=b-\frac{a b x x}{c^{2}}+\frac{a 45 x^{2}}{c^{6}}+\frac{x^{3}}{c^{2}}+\frac{a 333 x}{c^{8}}-\frac{a s b x x^{3}}{c^{8}}+\frac{a s 53,3}{c^{10}} \text { \& cc. } \end{gathered}$	
$\begin{array}{ll} 6+p=y . & +y^{3} \\ & +a x y \\ & +a^{2} y \\ & -x^{3} \\ & -2 a^{3} \end{array}$	$\begin{aligned} & +b^{3}+3^{3} p+3 b p^{2}+p^{3} \\ & +a b x+a x p \\ & +a^{2} b+a^{2} p \\ & -x^{3} \\ & -2 a^{3} \end{aligned}$
$\begin{aligned} -\frac{a b x}{c^{2}}+q=p & +p^{3} \\ & +3 b p^{2} \\ & +a x p \\ & +c^{2} p \\ & +x^{3} \\ & +a b x \end{aligned}$	
$\left.c^{2}+a x-\frac{6 a b^{2} x}{c^{2}}\right) \frac{c^{4} x^{2}}{c^{4}}+x^{3}+\frac{a^{3 b 33 x^{3}}}{6}\left(\frac{4^{4} x^{2}}{c^{6}}+\frac{x^{3}}{c^{3}}+\frac{33 x^{3}}{c^{8}}\right. \text { \&c. }$	

45. Here writing b in the Quote, I fuppore $b+p=y$, and then for y I fubflitute as you fee. Whence proceeds $p^{3}+3 b p^{2}$, \&cc. rejecting the Terms $b^{3}+a^{2} b-2 a^{3}$, as being equal to nothing: For b is fuppos'd to be a Root of this Equation $y^{3}+a^{2} y-2 a^{3}=0$. Then
 $\frac{-a b x}{a^{2}+3^{b^{2}}}+q$ to be fubftituted for p.
46. But for brevity's fake I write $c c$ for $a a+3 b b$, yet with this caution, that $a a+3 b b$ may be reftored, whenever 1 perceive that the Terms may be abbreviated by it. When the Work is finifh'd, I aflume fome Number for a, and refolve this Equation $j^{3}-1-a^{2} y-$ $2 a^{3}=0$, as is Chewn above concerning Numeral Equations; and I fubftitute for b any one of its Roots, if it has three Roots. Or rather, I deliver fuch Equations from Species, as far as I can, efpecially from the indefinite Species, and that after the manner before infinuated. And for the reft only, if any remain that cannot be expunged, I put Numbers. Thus $y^{3}+a^{2} y-2 a^{3}=0$ will be freed from a, by dividing the Root by a, and it will become $y^{3}+y-2=0$, whofe Root being found, and multiply'd by a, muft be fubfituted inftead of b.
47. Hitherto I have fuppos'd the indefinite Species to be little. But if it be fuppos'd to approach nearly to a given Quantity, for that indefinitely fmall difference I put fome Species, and that being fubftituted, I folve the Equation as before. Thus in the Equation $\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+\frac{1}{3} y^{3}-\frac{1}{8} y^{2}+y+a-x=0$, it being known or fuppos'd that x is nearly of the fame Quantity as a, I fuppofe z to be their difference; and then writing $a+z$ or $a-z$ for x, there will arife $\frac{1}{5} y^{5}-\frac{1}{4} y^{4}+\frac{1}{3} y^{3}-\frac{1}{3} y^{2}+y \pm z=0$, which is to be folved as before.
48.-But if that Species be fuppos'd to be indefinitely great, for its Reciprocal, which will therefore be indefinitely little, I put fome Species, which being fubftituted, I proceed in the Refolution as before. Thus having $y^{3}+y^{2}+y-x^{3}=0$, where x is known or fuppos'd to be very great, for the reciprocally little Quantity $\frac{1}{x}$ I put z, and fubftituting $\frac{1}{z}$ for x, there will arife $y^{\prime}+y^{2}+y-$ $\frac{1}{z^{3}}=0$, whofe Root is $y=\frac{1}{z}-\frac{1}{3}-\frac{2}{9} z+\frac{7}{81} z^{2}+\frac{5}{81} z^{3}$, \&c. where x being reftored, if you pleafe, it will be $y=x-\frac{1}{3}+\frac{2}{9 x}+\frac{7}{81 x^{2}}$ $+\frac{5}{81 x^{3}}, \& c$.
48. If it fhould happen that none of thefe Expedients fhould fucceed to your defire, you may have recourfe to another. Thus in the Equation $y^{4}-x^{2} y^{2}+x y^{2}+2 y^{2}-2 y+1=0$, whereas the firft Term ought to be obtain'd from the Suppofition that $y^{4}+2 y^{2}-2 y+1=0$, which yet admits of no ponible Root; you may try what can be done another way. As you may fuppofe that x is but little different from +2 , or that $2+z=x$. Then fubftituting $2+z$ inftead of x, there will arife $y^{4}-z^{2} y^{2}-3 z y^{4}$ $-2 y+\mathrm{I}=0$, and the Quote will begin from +I . Or if you fuppofe x to be indefinitely great, or $\frac{1}{x}=z$, you will have y^{4} $\frac{y^{2}}{z^{2}}+\frac{y^{2}}{z}+2 y^{2}-2 y+1=0$, and $+z$ for the initial Term of the Quote.
49. And thus by proceeding according to feveral Suppofitions, you may extract and exprefs Roots after various ways.

5 I. If you thould defire to find after how many ways this may be done, you muft try what Quantities; when fubftituted for the indefinite Species in the propofed Equation, will make it divifible by $y,+$ or - fome Quantity, or by y alone. Which, for Example fake, will happen in the Equation $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$,
by. fubftituting $+a$, or $-a$, or $-2 a$, or $\left.\overline{-2 a^{3}}\right|^{\frac{1}{3}}$, \&c. inftead of x. And thus you may conveniently fuppofe the Quantity x to differ little from $+a$, or $-a$, or $-2 a$, or $-\left.2 a^{3}\right|^{\frac{1}{3}}$, and thence you may extract the Root of the Equation propofed after fo many ways. And perhaps alfo after fo many other ways, by fuppoling thofe differences to be indefinitely great. Befides, if you take for the indefinite Quantity this or that of the Species which exprefs the Root, you may perhaps obtain your defire after other ways. And farther ftill, by fubftituting any fictitious Values for the indefinite Species, fuch as $a z+b z^{2}, \frac{a}{b+z}, \frac{a+c z}{b+z}, \& c$. and then proceeding as before in the Equations that will refult.
52. But now that the truth of thefe Conclufions may be manifeft; that is, that the Quotes thus extracted, and produced ad libitum, approach fo near to the Root of the Equation, as at laft to differ from it by lefs than any affignable Quantity, and therefore when infinitely continued, do not at all differ from it: You are to confider, that the Quantities in the left-hand Column of the righthand fide of the Diagrams, are the laft Terms of the Equations whofe Roots are $p, q, r, s, \& c$. and that as they vanifh, the Roots $p, q, r, s, \& z c$. that is, the differences between the Quote and the Root fought, vanifh at the fame time. So that the Quote will not then differ from the true Root. Wherefore at the beginning of the Work, if you fee that the Terms in the faid Column will all deftroy one another, you may conclude, that the Quote fo far extracted is the perfect Root of the Equation. But if it be otherivife, you will fee however, that the Terms in which the indefifitely fmall Species is of few Dimenfions, that is, the greatef Terms, are continually taken out of that Column, and that at laft none will remain there, unlefs fuch as are lefs than any given Quantity, and therefore not greater than nothing when the Work is continued ad infinitum. So that the Quote, when infinitely extracted, will at laft be the true Root.
53. Laftly, altho' the Species, which for the fake of perfpicuity I have hitherto fuppos'd to be indefinitely little, fhould however be fuppos'd to be as great as you pleafe, yet the Quotes will fill be true, though they may not converge fo faft to the true Root: This is manifert from the Analogy of the thing. But here the Limits of the Roots, or the greateft and leaft Quantities, come to be confider'd. For thefe Properties are in common both to finite and infinite Equations. The Root in thefe is then greateft or leaft, when
when there is the greateft or leaf difference between the Sums of the affirmative Terms, and of the negative Terms; and is limited when the indefinite Quantity, (which therefore not improperly I fuppos'd to be fall,) cannot be taken greater, but that the Magnitude of the Root will immediately become infinite, that is, will become impoffible.
54. To illustrate this, let ACD be a Semicircle defcribed on the Diameter $A D$, and $B C$ be an Ordinate. Make $\mathrm{AB}=x, \mathrm{BC}=y, \mathrm{AD}=a$. Then $y=\sqrt{a x-x x}=\sqrt{ } a x-\frac{x}{2 a} \sqrt{ } a x-$ $\frac{x^{2}}{8 a^{2}} \sqrt{ } \sqrt{x}-\frac{x^{j}}{16 a^{3}} \sqrt{2 x}, \& c$. as before. Therefore BC, or y, then becomes greateft when $\sqrt{ } a x$ mot exceeds all the Terms
 $\frac{x}{2 a} \sqrt{ } a x+\frac{x^{2}}{8 a^{2}} \sqrt{ } a x+\frac{x^{3}}{16 a^{3}} \sqrt{ } a x, \& c$. that is, when $x=\frac{1}{2} a$; but it will be terminated when $x=a$. For if we take x greater than a, the Sum of all the Terms - $\frac{x}{2 a} \sqrt{ } a x-\frac{x^{2}}{8 a^{2}} \sqrt{ } a x-\frac{x^{3}}{16 a^{3}} \sqrt{ } a x$, \&c. will be infinite. There is another Limit alfo, when $x=0$, by reason of the impoffibility of the Radical $\sqrt{-a x}$; to which Terms or Limits, the Limits of the Semicircle A, B, and D, are corse respondent.

Transition to the Method of Fluxions.
55. And thus much for the Methods of Computation, of which I hall make frequent use in what follows. Now it remains, that for an Illustration of the Analytick Art, I fhould give rome Specimons of Problems, efpecially fuch as the nature of Curves will fupply. But firft it may be observed, that all the difficulties of there may be reduced to there two Problems only, which I hall propose concerning a Space defcribed by local Motion, any how accelerated or retarded.

- 56. I. The Length of the Space deforibed being continually (that is, at all Times) given; to find the Velocity of the Motion at any Time proposed.
12.237.A.S7, 57. II. The Velocity of the Motion being continually given; to find the Length of the Space defcribed at any Time proposed.

58. Thus in the Equation $x x=y$, if y reprefents the Length of the Space at any time defcribed, which (time) another Space x, by increafing with an uniform Celerity \dot{x}, meafures and exhibits as D 2
defcribed: Then $2 x x$ will reprefent the Celerity by which the Space y, at the fame moment of Time, proceed's to be defcribed; and contrary-wife. And hence it is, that in what follows, I confider Quantities as if they were generated by continual Increafe, after the manner of a Space, which a Body or Thing in Motion defcribes.
59. But whereas we need not confider the Time here, any farther than as it is expounded and meafured by an equable local Motion ; and befides, whereas only Quantities of the fame kind can be compared together; and alfo their Velocities of Increafe and Decreafe: Therefore in what follows I fhall have no regard to Time formally confider'd, but I fhall fuppofe fome one of the Quantities propofed, being of the fame kind, to be increafed by an equable Fluxion, to which the reft may be referr'd, as it were to Time; and therefore, by way of Analogy, it may not improperly receive the name of Time. Whenever therefore the word Time occurs in what follows, (which for the fake of perfpicuity and diftinction I have fometimes ufed,) by that Word I would not have it underftood as if I meant Time in its formal Acceptation, but only that other Quantity, by the equable Increafe or Fluxion whereof, Time is expounded and meafured.
See Jimpsons Boctirne of 60. Now thofe Quantities which I confider as gradually and indefinitely increafing, I thall hereafter call Fluents, or Flowing 2 uantities, and fhall reprefent them by the final Letters of the Alphabet v, x, y, and z; that I may diftinguifh them from other Quantities, which in Equations are to be confider'd as known and. determinate, and which therefore are reprefented by the initial Letters $a, b, c, \& x c$. And the Velocities by which every Fluent is increafed by its generating Motion, (which I may call Fluxions,' $e_{\text {or }}$ fimply Velocities or Celerities,) I fhall reprefent by the fame Letters pointed thus $\dot{v}, \dot{x}, \dot{y}$, and z. That is, for the Celerity of the Quantity v I fhall put \dot{v}, and fo for the Celerities of the other Quantities x, y, and z, I fhall put \dot{x}, \dot{y}, and \dot{z} refpectively.

6I. Thefe things being premifed, I fhall now forthwith proceed to the matter in hand; and firft I fhall give the Solution of the two Problems juft now propofed.

P R O B. I.

The Relation of the Flowing Quantities to one another being given, to determine the Relation of their Fluxions.

SOLUTION.

I. Difpofe the Equation, by which the given Relation is exprefs'd, according to the Dimenfions of fome one of its flowing Quantities, fuppofe x, and multiply its Terms by any Arithmetical Progreffion, and then by $\frac{x}{x}$. And perform this Operation feparately for every one of the flowing Quantities. Then make the Sum of all the Products equal to nothing, and you will have the Equation required.
2. Example 1. If the Relation of the flowing Quantities x and y be $x^{3}-a x^{2}+a x y-y^{3}=0$; firft difpofe the Terms.according to x, and then according to y, and multiply them in the following manner.

The Sum of the Products is $3 \dot{x} x^{2}-2 a \dot{x} \dot{x}+a \dot{x} y-3 y y^{2}+a \dot{y} x=0$, which Equation gives the Relation between the Fluxions \dot{x} and \dot{y}. For if you take x at pleafure, the Equation $x^{3}-a x^{2}+a x y-y^{3}$ $=0$ will give y. Which being determined, it will be $\dot{x}: \dot{y}:$: $3 y^{2}-a x: 3 x^{2}-2 a x+a y$.
3. Ex. 2. If the Relation of the Quantities x, y, and z, be exprefs'd by the Equation $2 y^{3}+x^{3} y-2 c y z+3 y z^{2}-z^{3}=0$;

Wherefore the Relation of the Celerities of Flowing, or of the Fluxions \dot{x}, \dot{y}, and \dot{z}, is $4 \dot{y} y^{2}+\frac{j z^{3}}{y}+2 \dot{x} x y-3 z z^{2}+6 z z z-2 c z y$ $=0$.
4. But fince there are here three flowing Quantities, x, y, and z, another Equation ought alfo to be given, by which the Relation among them, as alfo among their Fluxions, may be intirely determined. As if it were fuppofed that $x+y-z=0$. From whence another Relation among the Fluxions $x+y-z=0$ would be found by this Rule. Now compare thefe with the foregoing Equations, by expunging any one of the three Quantities, and alfo any one of the Fluxions, and then you will obtain an Equation which will intirely determine the Relation of the reft.
5. In the Equation propos'd, whenever there are complex Fractions, or furd Quantities, I put fo many Letters for each, and fuppofing them to reprefent flowing Quantities, I work as before. Afterwards I fupprefs and exterminate the affumed Letters, as you fee done here.
6. Ex. 3. If the Relation of the Quantities x and y be $y y$ - $a a$ $-x \sqrt{a a-x x}=0$; for $x \sqrt{a a-x x} \mathrm{I}$ write z, and thence I have the two Equations $y y-a a-z=0$, and $a^{2} x^{2}-x^{4}-z^{2}$ $=0$, of which the firft will give $2 y y-z=0$, as before, for the Relation of the Celerities \dot{y} and \ddot{z}, and the latter will give $2 \Omega^{2} \dot{x} x$ $-4 \dot{x} \dot{x}^{3}-2 \dot{z} z=0$, or $\frac{a^{2} \dot{x} \dot{x}-z \dot{x}^{3}}{z}=\dot{z}$, for the Relation of the Celerities \dot{x} and \dot{z}. Now \dot{z} being expunged, it will be $2 \dot{y} y \frac{a^{2} \dot{x}+2 \dot{x}^{3}}{\tilde{z}}$ $=0$, and then reftoring $x \sqrt{a a-x x}$ for z, we fhall have $2 j y$ $\frac{-a^{2} \dot{x}+2 \dot{x} x^{2}}{\sqrt{a a-x x}}=0$, for the Relation between \dot{x} and \dot{y}, as was required.
7. Ex. 4. If $x^{3}-a y^{2}+\frac{b_{1}^{3}}{a+y}-x x \sqrt{a y+x x}=0$, expreffies the Relation that is between x and $y: I$ make $\frac{b_{y} 3}{a+y}=z$, and $x x \sqrt{a y+x x}=v$, from whence I Thall have the three Equations x^{3} $a y^{2}+z-v=0, a z+y z-b y^{3}=0$, and $a x^{4} y+x^{6}-v v=0$. The firft gives $3 x x^{2}-2 a y y+z-v=0$, the fecond gives $a z+$ $z y+y z-3 b y y^{2}=0$, and the third gives $4 a x x^{3} y+6 x x^{3}+a y x^{4}$ $-2 v=0$, for the Relations of the Velocities \dot{v}, x, \dot{y}, and \dot{z}. But the
the Values of \dot{z} and \dot{v}, found by the fecond and third Equations, (that is, $\frac{3 b \dot{y}^{2}-\dot{y} x}{a+y}$ for \dot{z}, and $\frac{4 \dot{x}_{3} \dot{x}^{3}+6 \dot{x}_{2}{ }^{3}+a \dot{x}_{3} 4}{2 v}$ for \dot{v})I fubftitute in the firft Equation, and there arifes $3 \dot{x} x^{2}-2 a y y+\frac{3 b y^{2}-y z-4 a \dot{x} \cdot x^{3} y-6 \dot{x} x^{3}-a j x^{4}}{a v+y}$ $=0$. Then inftead of z and v reftoring their Values $\frac{b_{y}{ }^{8}}{a+y}$ and $x x \sqrt{a y+x x}$, there will arife the Equation fought $3 \dot{x} x^{2}-2 a y y$ $\frac{+3 a b y^{2}+2 b y^{3} 3^{3}}{a a+2 a y+y y}-\frac{4 a \dot{x} x y-6 \dot{x}^{3}-a i x x}{2 \sqrt{a y+x x}}=0$, by which the Relation of the Velocities x and y will be exprefs'd.
8. After what manner the Operation is to be perform'd in other Cafes, I believe is manifeft from hence; as when in the Equation propos'd there are found furd Denominators, Cubick Radicals, Radicals within Radicals, as $\sqrt{a x+\sqrt{a a-x x}}$, or any other complicate Terms of the like kind.
9. Furthermore, altho' in the Equation propofed there fhould be Quantities involved, which cannot be determined or exprefs'd by any Geometrical Method, fuch as Curvilinear Areas or the Lengths of Curve-lines; yet the Relations of their Fluxions may be found, as will appear from the following Example.

Preparation for Example 5 .

10. Suppofe $B D$ to be an Ordinate at right Angles to $A B$, and that ADH be any Curve, which is defined by the Relation between $A B$ and $B D$ exhibited by an Equation. Let $A B$ be called x, and the Area of the Curve ADB, apply'd to Unity, be call'd \approx. Then erect the Perpendicular AC equal to Unity, and thro' C draw CE parallel to AB , and meeting BD in E . Then conceiving
 there two Superficies ADB and ACEB to be generated by the Motion of the right Line BED; it is manifeft that their Fluxions, (that is, the Flusions of the Quantities $\mathrm{I} \times z$, and $\mathrm{I} \times x$, or of the Quantities z and x, are to each other as the generating Lines BD and BE . Therefore $\underset{z}{z} \dot{x}: \mathrm{BD}: \mathrm{BE}$ or I , and therefore $\dot{z}=\dot{x} \times \mathrm{BD}$.

I 1 . And hence it is, that \approx may be involved in any Equation, exprefing the Relation between x and any other flowing Quantity y; and yet the Relation of the Fluxions x and \dot{y} may however be difcover'd.
12. Ex. 5. As if the Equation $z z+a x z-y^{4}=0$ were propos'd to exprefs the Relation between x and y, as alfo $\sqrt{a x-x x}$ $=\mathrm{BD}$, for determining a Curve, which therefore will be a Circle. The Equation $z z+a x z-y^{4}=0$, as before, will give $2 z z+$ $a z x+a \dot{x} z-4 y y^{3}=0$, for the Relation of the Celerities \dot{x}, \dot{y}, and \dot{z}. And therefore fence it is $\dot{z}=\dot{x} \times \mathrm{BD}$ or $=\dot{x} \sqrt{a x-x x}$, fubftitute this Value inftead of it, and there will arife the Equation $\overline{2 x z+a x x} \sqrt{a x-x x}+a \dot{x} z-4 y y^{5}=0$, which determines the Relation of the Celerities x and y.

Demonstration of the Solution.

13. The Moments of flowing Quantities, (that is, their indefinitely final Parts, by the acceffion of which, in indefinitely fall portions of Time, they are continually increafed,) are as the Yelocities of their Flowing or Increafing.
14. Wherefore if the Moment of any one, as x, be reprefented by the Product of its Celerity x into an indefinitely fall Quantity 0 (that is, by $x 0$,) the Moments of the others v, y, z, will be reprefented by vo, yo, zo; becaufe vo, xu, yo, and $z o$, are to each other as $\dot{v}, \dot{x}, \dot{y}$, and \dot{z}.

See the Anafier does infiniment petite of the MH. de Sittaspitul.
15. Now fince the Moments, as x_{0} and $j 0$, are the indefinitely little acceffions of the flowing Quantities x and y, by which thole Quantities are increased through the feveral indefinitely little intervals of Time; it follows, that thole Quantities x and y, after any indefinitely fall interval of Time, become $x+x 0$ and $y+j o$. And therefore the Equation, which at all times indifferently expreffes the Relation of the flowing Quantities, will as well exprefs the Relation between $x+\dot{x} 0$ and $y+y o$, as between x and y : So that $x+x_{0}$ and $y+j 0$ may be fubftituted in the fame Equation for thole Quantities, inftead of x and y.
16. Therefore let any Equation $x^{-3}-a x^{2}+a x y-y^{3}=0$ be given, and fubftitute $x+x 0$ for x, and $y+j 0$ for y, and there will arife

$$
\left.\begin{array}{rl}
& x^{3}+3 x 0 x^{2}+3 x^{2} 00 x+\dot{x}^{3} 0^{3} \\
-a x^{2}-2 a x 0 x-a x^{2} 00 \\
+a x y+a x 0 y+a y o x+a x y 00 \\
-y^{3}-3 y^{3} o y^{2}-3 y^{2} 00 y-j^{3} o^{3}
\end{array}\right\}=0 .
$$

17. Now by Suppofition $x^{3}-a x^{2}+a x y-y^{3}=0$, which therefore being expunged, and the remaining Terns being divided by 0 , there will remain $3 x x^{2}+3 x^{2} 0 x+x^{3} c o-2 a x x-a x^{2} 0+a x y+$ $a j x+a x y_{0}-3 y^{2}-3 y^{2} 0 y-y^{3} 00=0$. But whereas o is fuppofed to be infinitely little, that it may reprefent the Moments of Quantities; the Terms that are multiply'd by it will be nothing in relpect of the reft. Therefore I reject them, and there remains $3 x x^{2}$ $2 a x x+a x y+a y x-3 y y^{2}=0$, as above in Examp. 1.
18. Here we may obferve; that the 'Terms that are not multiply'd by o will always vanifh, as alfo thofe Terms that are multiply'd by o of more than one Dimenfion. And that the reft of the Terms being divided by 0 , will always acquire the form that they ought to have by the foregoing Rule : Which was the thing to be proved.
19. And this being now fhewn, the other things included in the Rule will eafily follow. As that in the propos'd Equation feveral flowing Quantities may be involved; and that the Terms may be multiply'd, not only by the Number of the Dimenfions of the flowing Quantities, but alfo by any other Arithmetical Progrefions; fo that in the Operation there may be the fame difference of the Terms according to any of the flowing Quantities, and the Progreffion be difpos'd according to the fame order of the Dimenfions of each of them. And thefe things being allow'd, what is taught befides in Examp. 3, 4, and 5, will be plain enough of itfelf.

P R O B. II.

An Equation being propofed, including the Fluxions of Quantities, to find the Relations of thofe Quantities to one another.

A Particular Solution.

1. As this Problem is the Converfe of the foregoing, it muft be folved by proceeding in a contrary manner. That is, the Terms multiply'd by \dot{x} being difpofed according to the Dimenfions of x; they mult be divided by $\frac{x}{x}$, and then by the number of their Di_{-} menfions, or perhaps by fome other Arithmetical Progreffion. Then the fame work muft be repeated with the Terms multiply'd by \dot{v}, \dot{y},
or \dot{z}, and the Sum refulting muft be made equal to nothing, rejecting the Terms that are redundant.
2. Example. Let the Equation propofed be $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y$ $-3 \dot{y} y^{2}+a j x=0$. The Operation will be after this manner:

Divide

$$
\begin{array}{l|ll}
3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y & \text { Divide }-3 \dot{y} y^{2} *+a \dot{y} x \\
3 x^{3}-2 a x^{2}+a y x & \text { by } \frac{\dot{y}}{y} . \text { Quot. }-3 y^{3} *+a x y
\end{array}
$$

by $\frac{\dot{x}}{x}$. Quot. $3 x^{3}-2 a x^{2}+a y x$
Divide by
Quote
Therefore the Sum $x^{3}-a x^{2}+a x y-y^{3}=0$, will be the required Relation of the Quantities x and y. Where it is to be obferved, that tho' the Term axy occurs twice, yet I do not put it twice in the $\operatorname{Sum} x^{3}-a x^{2}+a x y-y^{3}=0$, but I reject the redundant Term. And fo whenever any Term recurs twice, (or oftener when there are feveral flowing Quantities concern'd, it muft be wrote only once in the Sum of the Terms.
3. There are other Circumftances to be obferved, which I Aall leave to the Sagacity of the Artift ; for it would be needlefs to dwell too long upon this matter, becaufe the Problem cannot always be folved by this Artifice. I fhall add however, that after the Relation of the Fluents is obtain'd by this Method, if we can return, by Prob. r. to the propofed Equation involving the Fluxions, then the work is right, otherwife not. Thus in the Example propofed, after I have found the Equation $x^{3}-a x^{2}+a x y-y^{3}=0$, if from thence I feek the Relation of the Fluxions x and y by the firft Problem, I fhall arrive at the propofed Equation $3 x x^{2}-2 a x x+$ $a x y-3 y y^{2}+a y x=0$. Whence it is plain, that the Equation $x^{3}-a x^{2}+a x y-y^{3}=0$ is rightly found. But if the Equation $x x-\dot{x} y+a \dot{y}=0$ were propofed, by the prefcribed Method I Thould obtain this $\frac{1}{2} x^{2}-x y+a y=0$, for the Relation between \approx and y; which Conclufion would be erroneous: Since by Prob. I. the Equation $\dot{x} x-\dot{x} y-j x+a y=0$ would be proauced, which is different from the former Equation.
4. Having therefore premifed this in a perfunctory manner, I hall now undertake the general Solution.

A Preparationfor the General Solution.
5. Firft it muft be obferved, that in the propofed Equation the Symbols of the Fluxions, (fince they are Quantities of a different kind from the Quantities of which they are the Fluxions,) ought to afcend in every Term to the fame number of Dimenfions: And when it happens otherwife, another Fluxion of fome flowing Quantity muft be underfood to be Unity, by which the lower Terms are fo often to be multiply'd, till the Symbols of the Fluxions arife to the fame number. of Dimenfions in all the Terms. As if the Equation $x+x y x-a x x=0$ were propofed, the Fluxion z of fome third flowing Quantity z muft be underfood to be Unity, by which the firf Term x muft be multiply'd once, and the laft axx twice, that the Fluxions, in them may afcend to as many Dimenfions as in the fecond Tern $x y x:$ As if the propofed Equation had been derived from this $\dot{x} \dot{z}+x \dot{x}-a \dot{z} \dot{x} x^{\frac{1}{2}}=0$, by putting $\dot{z}=1$. And thus in the Equation $y \dot{x}=y, y$, you ought to imagine \dot{x} to be Unity, by which the. Term $y y$ is multiply'd.
6. Now Equations, in which there are only two flowing Quantities, which every where arife to the fame number of Dimenfions, may always be reduced to fuch a form, as that on one fide may be had the Ratio of the Fluxions, (as $\frac{\dot{y}}{\dot{x}}$, or $\frac{\dot{x}}{\dot{y}}$, or $\frac{\dot{z}}{\dot{x}}$, ©cc.) and on the other fide the Value of that Ratio, exprefs'd by fimple Algebraic Terms; as you may fee here, $\frac{y}{x}=2+2 x-y$. And when the foregoing particular Solution will hot take place, it is required that you hould bring the Equations to this form.
7. Wherefore when in the Value of that Ratio any Term is denominated by a Compound quantity, or is Radical, or if that Ratio be' the Root of an affected Equation ; the Reduction munt be perform'd either by Divifion, or by Extraction of Roots, or by the Refolution of an affected Equation, as has been before fliewn.
8. As if the Equation $y a-j x-x a+\dot{x} x-x y=0$ were propofed; firf by Reduction this becomes $\frac{\dot{y}}{\dot{x}}=1+\frac{y}{a-x}$, or $\frac{\dot{x}}{y}=$ $\frac{a-x}{a-x+y}$. And in the firft Cafe, if I reduce the Term $\frac{y}{a-x}$, denominated by the compound Quantity $a-x$, to an infinite Series of E 2
fimple
fiumple Terms $\frac{y}{a}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a 4}$ \&c. by dividing the Numerator y by the Denominator $a-x$, I hall have $\frac{\dot{y}}{x}=1+\frac{y}{a}+\frac{x y}{a^{2}}+$ $\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a^{4}} \& x$ c. by the help of which the Relation between x and y is to be determined.
9. So the Equation $\ddot{y}=\ddot{x} y+\ddot{x} x x x x$ being given, or $\frac{\ddot{y}}{x \dot{x}}=\frac{\dot{y}}{\dot{x}}$. $+x x$, and by a farther Reduction $\frac{y}{\dot{x}}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+x x}:$ I extract the fquare Root out of the Terms $\frac{1}{4}+x x$, and obtain the infinite Series $\frac{1}{2}+x^{2}-x^{4}+2 x^{6}-5 x^{6}+14 x^{\circ} 0$, \&xc. which if I fubftitute for $\sqrt{\frac{1}{4}+x x}$, I fhall have $\frac{y}{x}=1+x^{2}-x^{4}+2 x^{6}-5 x^{9}$, \&c. or $\frac{\dot{y}}{\dot{x}}=-x^{2}+x^{4}-2 x^{6}+5 x^{8}, \& x$. according as $\sqrt{\frac{1}{4}+x x}$ is either added to $\frac{1}{2}$, or fubtracted from it.
10. And thus if the Equation $\dot{y}^{3}+a x^{2} \dot{x}^{2} \dot{y}+a^{2} \dot{x}^{2} \dot{y}-x^{3} \dot{x}^{3}-$ $2 \dot{x^{3}} a^{3}=0$ were propofed, or $\frac{{ }^{\frac{1}{3}}}{\dot{x}}+a x^{\frac{y}{x}}+a^{2} \frac{\dot{y}}{x}-x^{3}-2 a^{3}=0$, I extract the Root of the affected Cubick Equation, and there. arifes $\frac{y}{x}=a-\frac{x}{4}+\frac{x x}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{103844^{3}} \&$ c. as may be feen. 2. before.
11. But here it may be obferved, that I look upon thofe Terms only as compounded, which are compounded in refpect of flowing Quantities. For I efteem thofe as fimple Quantities which are compounded only in refpect of given Qunntities. For they may be reduced to fimple Quantities by fuppofing them equal to other given Quantities. Thus I confider the Quantities $\frac{a x+b x}{c}, \frac{x}{a+b}, \frac{b c}{a x+b x}$, $\frac{l+}{a x^{2}+b x^{2}}, \sqrt{a x+b x}$, \&c. as fimple Quantities, becaufe they may may all be reduced to the fimple Quantities $\frac{c x}{c}, \frac{x}{\delta}, \frac{b c^{2}}{e x}, \frac{b 4}{c x^{2}}, \sqrt{e x}$ (or $\left.e^{\frac{2}{2}} x^{\frac{1}{2}}\right) \& \mathrm{cc}$. by fuppofing $a+b=e$.
12. Moreover, that the flowing Quantities may the more eafily be diftinguifh'd from one another, the Fluxion that is put in the Numerator of the Ratio, or the Antecedent of the Ratio, may not improperly be call'd the Relate Quantity, and the other in the Denominator, to which it is compared, the Correlate: Alfo the flowing
flowing Quantities may be diftinguifh'd by the fame Names refpectively. And for the better underftanding of what follows, you may conceive, that the Correlate Quantity is Time, or rather any other Quantity that flows equably, by which Time is expounded and meafured. And that the other, or the Relate Quantity, is Space, which the moving Thing, or Point, any how accelerated or retarded, deferibes in that Time. And that it is the Intention of the Problem, that from the Velocity of the Motion, being given at every Inftant of Time, the Space defcribed in the whole Time may be determined.
13. But in refpect of this Problem Equations may be diftinguifl'd into three Orders.
14. Firft: In which two Fluxions of Quantities, and only one of their flowing Quantities are involved.
15. Second : In which the two flowing Quantities are involved, together with their Fluxions.
16. Third: In which the Fluxions of more than two Quantities are involved.
17. With there Premifes I fhall attempt the Solution of the Problem, according to thefe three Cafes.

Solution of Case I.

18. Suppofe the flowing Quantity, which alone is contain'd in the Equation, to be the Correlate, and the Equation being accordingly difpos'd, (that is, by making on one fide to be only the Ratio of the Fluxion of the other to the Fluxion of this, and on the other fide to be the Value of this Ratio in fimple Terms,) multiply the Value of the Ratio of the Fluxions by the Correlate Quantity, then divide each of its Terms by the number of Dimenfions with which that Quantity is there affected, and what arifes will be equivalent to the other flowing Quantity.
19. So propofing the Equation $\dot{y} \dot{y}=\dot{x} \dot{y}+\dot{x} \dot{x} x x$; I fuppofe x to be the Correlate Quantity, and the Equation being accordingly reduced, we fhall have $\frac{n}{x}=\mathrm{I}+x^{2}-x^{4}+2 x^{6}, 8 c$. Now I multiply the Value of $\frac{i}{x}$ into x, and there arifes $x+x^{5}-x^{5}+2 x^{7}$, \&ic. which Terms I divide feverally by their number of Dimenfions, and the Refult $x+\frac{1}{3} x^{3}-\frac{1}{5} x^{5}+\frac{2}{7} \cdot x^{1}$, \&c. I put $=y$. And by
this Equation will be defined the Relation between x and y, as was required.
20. Let the Equation be $\frac{\dot{y}}{\dot{x}}=a-\frac{x}{4}+\frac{x x}{6_{4}{ }^{a}}+\frac{131 x^{3}}{512 a^{2}} \&<c$. there will arife $y=a x-\frac{x^{2}}{8}+\frac{x^{3}}{192 a}+\frac{131 \times 4}{2044^{2}}$ \&c. for determining the Relation between x and y.
21. And thus the Equation $\frac{\dot{y}}{\dot{x}}=\frac{1}{x^{3}}-\frac{1}{x^{2}}+\frac{n}{x^{\frac{1}{2}}}-x^{\frac{1}{2}}+x^{\frac{3}{2}}$, gives $y=-\frac{1}{2 x^{2}}+{ }_{x}^{1}+2 a x^{\frac{1}{2}}-\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{5} x^{\frac{3}{2}}$. For multiply the Value of $\frac{y}{x}$ into x, and it becomes $\frac{1}{x x}-\frac{1}{x}+a x^{\frac{1}{2}}-x^{\frac{3}{2}}+x^{\frac{5}{2}}$, or $x^{-2}-x^{-1}+a x^{\frac{1}{2}}-x^{\frac{3}{2}}+x^{\frac{5}{2}}$, which Terms being divided by the number of Dimenfions, the Value of y will arife as before.
22. After the fame manner the Equation $\frac{\dot{x}}{\dot{y}}=\frac{2 b^{2} c}{\sqrt{a y^{3}}}+\frac{3 b^{2}}{a+b}+$ $\sqrt{b y+c y}$, gives $x=-\frac{4^{b^{2} c}}{\sqrt{a y}}+\frac{y^{3}}{a+b}+\frac{2}{3} \sqrt{b y^{3}+c y^{3}}$. For the Value of $\frac{\dot{x}}{j}$ being multiply'd by y, there arifes $\frac{2 b^{2 c} c}{\sqrt{a y}}+\frac{3^{3}}{a+b}+$ $\sqrt{b y^{3}+c y^{\frac{1}{3}}}$ or $2 b^{2} c a^{-\frac{1}{2} y^{-\frac{1}{2}}}+\frac{3}{a+b} y^{3}+\sqrt{b+c} \times y^{\frac{1}{2}}$. And thence the Value of x refults, by dividing by the number of the Dimenfions of each Term.
23. And fo $\underset{\tilde{i}}{\underset{i}{\dot{x}}}=z^{\frac{2}{3}}$, gives $y=\frac{3}{3} z^{\frac{5}{3}}$. And $\frac{\dot{y}}{\dot{x}}=\frac{a b}{c \times \frac{1}{3}}$, gives $y=$ $\frac{3 a b x^{\frac{2}{3}}}{2 c}$. But the Equation $\frac{\dot{y}}{\dot{x}}=\frac{a}{x}$, gives $y=\frac{a}{0}$: For $\frac{a}{x}$ multiply'd into x makes a, which being divided by the number of Dimenfions, which is 0 , there arifes $\frac{a}{\circ}$, an infinite Quantity for the Value of y.
24. Wherefore, whenever a like Term fhall occur in the Value of $\frac{\dot{y}}{\dot{x}}$, whofe Denominator involves the Correlate Quantity of one Dimenfion only ; inftead of the Correlate Quantity, fubftitute the Sum or the Difference between the fame and fome other given Quantity to be affumed at pleafure. For there will be the fame Relation of Flowing, of the Fluents in the Equation fo produced, as of the Equation at firft propofed; and the infinite Relate Quan-
tity by this means will be diminifh'd by an infinite part of itfelf, and will become finite, but yet confifting of Terms infinite in number.
25. Therefore the Equation $\frac{y}{x}=\frac{a}{x}$ being propofed, if for $x \mathrm{I}$ write $b+x$, affuming the Quantity b at pleafure, there will arife $\frac{\dot{y}}{\dot{x}}=\frac{a}{b+x}$; and by Divifion $\frac{\dot{y}}{\dot{x}}=\frac{a}{b}-\frac{a x}{b^{2}}+\frac{a x^{2}}{b^{3}}-\frac{a x^{3}}{b^{3}}$ \&cc. And now the Rule aforegoing willgive $y=\frac{a x}{b}-\frac{a x^{2}}{26^{2}}+\frac{a x^{3}}{363}-\frac{a x^{4}}{4^{64}} \&$ c. for the Relation between x and y.
26. So if you have the Equation $\frac{y}{x}=\frac{2}{x}+3-x x$; becaure of the $\operatorname{Term} \frac{2}{x}$, if you write $1+x$ for x, there will arife $\frac{y}{x}$ $=\frac{2}{1+x}+2-2 x-x x$. Then reducing the Term $\frac{2}{1+x}$ into an infinite Series $+2-2 x+2 x^{2}-2 x^{3}+2 x^{4}$, \&c. you will have $=4-4 x+x^{2}-2 x^{3}+2 x^{4}, 8 c$. And then according to the Rule $y=4 x-2 x^{3}+\frac{1}{3} x^{3}-\frac{1}{2} x^{4}+\frac{2}{5} x^{5}$, \&c. for the Relation of $\%$ and y.
27. And thus if the Equation $\frac{\ddot{y}}{\underset{x}{x}}=x^{-\frac{x}{2}}+x^{-\frac{x}{-}}-x^{\frac{2}{2}}$ were propofed; becaufe I here obferve the Term x^{-x} (or $\frac{1}{x}$) to be found, I tranfmute x, by fubftituting $I-x$ for it, and there arifes $\frac{y}{x}$ $=\frac{1}{\sqrt{1-x}}+\frac{1}{1-x}-\sqrt{1-x}$. Now the Term $\frac{1}{1-x}$ produces $1+x+x^{2}+x^{3}, \& c$, and the Term $\sqrt{1-x}$ is equivalent to $1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{4} \sigma^{2} x^{3}$, and therefore $\frac{1}{\sqrt{1-x}}$ or $\frac{1}{1-\frac{1}{2} x-\frac{1}{8} x^{2}, 8 c c}$. the fame as $1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{8} x^{3}$, \&uc. So that when thefe Values are fubftituted, I fhall have $\frac{y}{\dot{x}}=\mathrm{I}+2 x+\frac{3}{2} x^{2}+\frac{2}{2} \frac{7}{6} x^{3}, \delta \mathrm{cc}$. And then by the Rule $y=x+x^{2}+\frac{1}{2} x^{3}+\frac{27}{67} x^{4}$, \&cc. And fo of others.
28. Alfo in other Cafes the Equation may fometimes be conveniently reduced, by fuch a Tranfinutation of the flowing Quantity. As if this Equation were propofed $\frac{y}{x}=\frac{c^{2} x}{6^{3}-3^{2} x+3 x^{2}-x^{3}}$; inftead
of x I write $c-x$, and then I fhall have $\frac{\dot{y}}{\dot{x}}=\frac{c^{3}-c^{2} x}{x^{3}}$ or $\frac{c^{3}}{a^{3}}-\frac{c^{3}}{x^{2}}$; and then by the Rule $y=-\frac{c^{3}}{2 \cdot x x}+\frac{c^{2}}{x}$. But the ufe of fuch Tranfmutations will appear more plainly in what follows.
Solution of Case II.
29. Preparation. And fo much for Equations that involve only one Fluent. But when each of them are found in the Equation, firft it muft be reduced to the Form prefcribed, by making, that on one fide may be had the Ratio of the Fluxions, equal to an aggregate of fimple Terms on the other fide.
30. And befides, if in the Equations fo reduced there be any Fractions denominated by the flowing Quantity, they muft be freed from thofe Denominators, by the above-mentioned Tranfmutation of the flowing Quantity.
31. So the Equation $y a x-\dot{x} x y-a \dot{x}=0$ being propofed, or $\frac{y}{x}=\frac{y}{a}+\frac{a}{x}$; becaufe of the Term $\frac{a}{x}$, I affume b at pleafure, and for x I either write $b+x$, or $b-x$, or $x-b$. As if I fhould write $b+x$, it will become $\frac{y}{x}=\frac{y}{a}+\frac{a}{b+x}$. And then the Term $\frac{a}{b+x}$ being converted by Divifion into an infinite Series, we fhall have $\frac{\dot{y}}{\dot{x}}=\frac{y}{a}+\frac{a}{b}-\frac{a x}{b^{2}}+\frac{a x^{2}}{b^{3}}-\frac{a x^{3}}{b^{4}}, \delta x \mathrm{c}$.
32. And after the fame manner the Equation $\frac{\dot{y}}{\dot{x}}=3 y-2 x+$ $\frac{x}{y}-\frac{2 y}{x x}$ being propofed; if, by reafon of the Terms $\frac{x}{y}$ and $\frac{2 y}{x x}$, I write $\mathrm{I}-y$ for y, and $\mathrm{I}-x$ for x, there will arife $\frac{y}{x}=$ $1-3 y+2 x+\frac{1-x}{1-y}+\frac{2 y-2}{1-2 x+x^{2}}$. But the Term $\frac{1-x}{1-y}$ by infinite Divifion gives $1-x+y-x y+y^{2}-x y^{2}+y^{3}-x y^{3}, \& c$. and the Term $\frac{2 y-2}{1-2 x+x x}$ by a like Divifion gives $2 y-2+4 x y$ $-4 x+6 x^{2} y-6 x^{2}+8 x^{3} y-8 x^{3}+10 x^{4} y-10 x^{4}, 8 x$. Therefore $\frac{y}{\dot{x}}=-3^{x}+3 x y+y^{2}-x y^{2}+y^{3}-x y^{3}, 8 \mathrm{c} .+6 x^{2} y-6 x^{2}$ $+8 x^{3} y-8 x^{5}+10 x^{4} y-10 x^{4}, \& c$.
33. Rule. The Equation being thus prepared, when need requires, difpofe the Terms according to the Dimenfions of the flowing Quantities, by fetting down firft thofe that are not affected by the Relate Quantity, then thofe that are affected by its leaft Dimenfion, and fo on. In like manner alfo difpofe the Terms in each of thefe Claffes according to the Dimenfions of the other Correlate Quantity, and thofe in the firft Clafs, (or fuch as are not affected by the Relate Quantity,) write in a collateral order, proceeding towards the right hand, and the reft in a defcending Series in the lefthand Column, as the following Diagrams indicate. The work being thus prepared, multiply the firft or the loweft of the Terms in the firft Clafs by the Correlate Quantity, and divide by the number of Dimenfions, and put this in the Quote for the initial Term of the Value of the Relate Quantity. Then fubfitute this into the Terms of the Equation that are difpofed in the left-hand Column, inftead of the Relate Quantity, and from the next loweft Terms you will obtain the fecond Term of the Quote, after the fame manner as you obtain'd the firft. And by repeating the Operation you may continue the Quote as far as you pleafe. But this will appear plainer by an Example or two.
34. Examp. I. Let the Equation $\frac{\dot{y}}{\dot{x}}=1-3 x+y+x^{2}+x y$ be propofed; whofe Terms $1-3 x+x^{2}$, which are not affected by the Relate Quantity y, you fee difpos'd collaterally in the up-

	+1-3x+xx
$\begin{aligned} & +y \\ & +x y \end{aligned}$	* $+x-x x+\frac{1}{3} \cdot x^{3}-\frac{1}{6} x^{4}+\frac{1}{3}-x^{5}, \delta c$. * $*+x x-x^{3}+\frac{1}{3} x^{4}-\frac{1}{6} x^{5}+\frac{5}{3}, x^{-6}, \& \mathrm{cc}$
The Sum	$1-2 x+x x-\frac{2}{3} \cdot x^{3}+\frac{1}{6} x^{4}-\frac{4}{3} \cdot x^{-5}, 80 \mathrm{c}$.
$y=$	$x-x x+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3} \frac{1}{0} x^{3}-\frac{1}{4} x^{6} x^{6}, 8 c$.

permoft Row, and the reft y and $x y$ in the left-hand Column. And firft I multiply the initial Term 1 into the Correlate Quantity x_{3} and it makes x, which being divided by the number of Dimenfrons I, I place it in the Quore under-written. Then fubftiuting this Term inftead of y in the marginal Terms $+y$ and $+x y$, I have $+x$ and $+x x$, which I write over againft them to the right hand. Then from the reft I take the loweft Terms - $3 x$ and $+x$, whofe aggregate - $2 x$ multiply'd into x becomes $-2 . x . x$, and
being divited by the number of Dimenfions 2 , gives - $x x$ for the fecond Term of the Value of y in the Quote. Then this Term being likewife aflumed to compleat the Value of the Marginals $+y$ and $+x y$, there will arife alfo - $x x$ and $-x^{3}$, to be added to the Terms $-x$ and $+x x$ that were before inferted. Which being done, I again aflume the next lowef Terms $+x x$, - $x x$, and $+x x$, which I collect into one Sum $a x x$, and thence I derive (as before) the third Term $+\frac{1}{3} x^{3}$, to be put in the Value of y. Again, taking this Term $\frac{1}{3} x^{3}$ into the Values of the marginal Terms, from the next loweft $+\frac{1}{3} x^{3}$ and $-x^{3}$ added together, I obtain - $\frac{1}{6} x^{4}$ for the fourth Term of the Value of y. And fo on in infinitum.
35. Examp.2. In like manner if it were required to determine the Relation of x and y in this Equation, $\frac{y}{x}=1+\frac{y}{a}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+$ $\frac{a^{3} y}{4}$, \&xc. which Series is fuppofed to proceed ad infinitum; I put I in the beginning, and the other Terms in the left-hand Column, and then purfue the work according to the following Diagram.

	+1
$+\frac{y}{a}$	$*+\frac{x}{a}+\frac{x^{2}}{2 a^{2}}+\frac{x^{3}}{2 a^{3}}+\frac{x^{4}}{2 a^{4}}+\frac{x^{5}}{2 a^{5}}, \delta x c .$
$+\frac{x y}{a^{2}}$	
$+\frac{x^{2} y}{a^{5}}$	$* \quad * \quad *+\frac{x^{3}}{a^{3}}+\frac{x^{4}}{2 a^{4}}+\frac{x^{3}}{2 a^{5}}, 8 \mathrm{c} .$
$+\frac{x 3 y}{a^{4}}$	* * * $\quad+\frac{x^{4}}{4}+\frac{x^{5}}{2-5}, \delta \mathrm{c}$ c.
+ $\frac{x^{4} /}{a^{3}}$	* $\quad * \quad * \quad *+\frac{2^{5}}{45}$, \&cc.
\&oc.	
Sum	$1+\frac{x}{a}+\frac{3 x^{2}}{2 a^{2}}+\frac{2 x^{3}}{a^{3}}+\frac{5 x^{4}}{2 a^{4}}+\frac{3 x^{5}}{n^{5}}, \& c \mathrm{c}$.
$y=$	$x+\frac{x^{2}}{2 a}+\frac{x^{3}}{2 a^{2}}+\frac{x^{4}}{2 a^{3}}+\frac{2^{5}}{2 a^{4}}+\frac{x^{6}}{2 a^{5}}, 8 \mathrm{cc}$.

36. As I here propofed to extract the Value of y as far as fix Dimenfions of x only; for that reafon I omit all the Terms in the Operation which I forefee will contribute nothing to my purpofe, as is intimated by the Mark, $E_{c} c$. which I have fubjoin'd to the Series that are cut off.
37. Examp. 3. In like manner if this Equation were propofed $\frac{y}{x}=-3 x+3 x y+y^{2}-x y^{2}+y^{3}-y^{3}+y^{4}-x^{4} y^{4} 8 c \cdot+6 x^{2} y$ $-6 x^{2}+8 x^{3} y-8 x^{3}+10 x y^{4}-10 x^{4}, 8 c$. and it is intended to extract the Value of y as far as feven Dimenfions of x. I place the Terms in order, according to the following Diagram, and I work as before, only with this exception, that fince in the left-hand Column y is not only of one, but alfo of two and three Dimenfions; (or of more than three, if I intended to produce the Value of y beyond the degree of x^{7},) I fubjoin the fecond and third Powers of the Value of y, fo far gradually produced, that when they are fubftituted by degrees to the right-hand, in the Values of the Marginals

to the lefi, Terms may arife of fo many Dimenfions is I obferve to be required for the following Operation. And by this Method there arifes at length $y=-\frac{3}{2} x^{2}-6 x^{3}-\frac{25}{5} x^{4}$, Sce, which is the F 2

Equation

Equation required. But whereas this Value is negative, it appears that one of the Quantities x or y decreafes, while the other increafes. And the fame thing is alio to be concluded, when one of the Fluxions is affirmative, and the other negative.
38. Examp. 4. You may proceed in like manner to refolve the Equation, when the Relate Quantity is affected with fractional Dimenfions. As if it were propofed to extract the Value of x from this Equation, $\frac{x}{j}=\frac{1}{2} y-4 y^{2}+2 y x^{\frac{1}{2}}-\frac{4}{3} x^{2}+7 y^{\frac{5}{2}}+2 y^{5}$, in

	$+\frac{1}{2} y *-4 y^{2}+7 y^{\frac{5}{2}}+2 y^{3}$
$\begin{array}{r} 2 y x^{\frac{1}{2}} \\ -\frac{4}{5} x^{2} \end{array}$	$\begin{array}{llll} * & *+y^{2} & * & -2 y^{3}+4 y^{\frac{3}{2}}-2 y^{4}, \& c . \\ * & * & * & * \\ * & * & -\frac{1}{2} \frac{1}{0} y^{4}, \& c . \end{array}$
Sum	$+\frac{1}{2} y \quad *-3 y^{2}+7 y^{\frac{5}{2}} \quad *+4 y^{\frac{7}{2}}-\frac{4}{2} \frac{1}{2} y^{4}$, \&c.
$\begin{aligned} & x= \\ & x^{\frac{1}{2}=} \\ & x^{2}= \end{aligned}$	$\begin{aligned} & +\frac{1}{4} y^{2}-y^{3}+2 y^{\frac{7}{2}} \quad * \quad+\frac{8}{y} y^{\frac{9}{2}}-\frac{4}{2} \sigma^{\frac{1}{0}} y^{\prime}, \delta c . \\ & +\frac{1}{2} y-y^{2}+2 y^{\frac{5}{2}}-y^{3}, \delta \delta c . \\ & \frac{1}{1} \frac{1}{5} y^{4}, \& c . \end{aligned}$

which x in the Term $2 y x^{\frac{x}{2}}$ (or $2 y \sqrt{ } x$) is affected with the Fractional Dimenfion $\frac{1}{2}$. From the Value of x I derive by degrees the Value of $x^{\frac{1}{2}}$ (that is, by extracting its fquare-Root,) as may be obferved in the lower part of this Diagram ; that it may be inferted and transfer'd gradually into the Value of the marginal Term $2 y^{\frac{1}{2}}$. And fo at laft I thall have the Equation $x=\frac{1}{4} y^{2}-y^{3}+$ $2 y^{\frac{3}{2}}+\frac{8}{9} y^{\frac{9}{2}}-\frac{4}{10} \frac{1}{10} y^{15}$, \&cc. by which x is expref'd indefinitely in refpect of y. And thus you may operate in any other cafe whatfoever.
39. I faid before, that there Solutions may be perform'd by an infinite variety of ways. This may be done if you affume at pleafure not only the initial quantity of the upper Series, but any other given quantity for the firft Term of the Quote, and then you may proceed as before. Thus in the firft of the preceding Examples, if you affume I for the firf Term of the Value of y, and fubftitute it for y in the marginal Terms $+y$ and $+x y$, and purfue the reft of the Operation as before, (of which I have here given a

	$+\mathrm{r}-3 x+x x$
$\begin{aligned} & +y \\ & +x y \end{aligned}$	
Sum	-2. ${ }^{*}+3{ }^{x^{2}}+x^{3}+\frac{5}{4} x^{4}$, 8xc.
$y=$	$1-2 x *+x^{3}+\frac{1}{4} x^{4}+\frac{1}{4} x^{5}$, \&cc.

Specimen, another Value of y will arife, $1+2 x+x^{3}+\frac{1}{4} x^{4}$, \&c. And thus another and another Value may be produced, by affuming 2 , or 3 , or any other number for its firft Term. Or if you make ufe of any Symbol, as a, to reprefent the firft Term indefinite'y, by the fame method of Operation, (which I fhall here fet down,) you will find $y=a+x+a x-x x+a x x+\frac{1}{3} x^{3}+\frac{2}{3} a x^{3}$, \&cc. which being found, for a you may fubftitute $1,2,0, \frac{1}{2}$, or any other Number, and thereby obtain the Relation between x and y an infinite variety of ways.

	$+1-3^{x}+x x$
$\begin{aligned} & +y \\ & +x y \end{aligned}$	$\begin{array}{r} +a+x-x x+\frac{1}{3} x^{3}, \& \mathrm{cc} \\ +a x+a x^{2}+\frac{3}{3} a x^{3}, \delta c . \\ +a x+x^{2}-x^{3}, \delta c . \\ +a x^{2}+a x^{5}, \& c . \end{array}$
Sum	$\begin{aligned} & +1-2 x+x^{2}-\frac{2}{3} x^{3}, \& c c \\ & +a+2 a x+2 a x^{2}+\frac{5}{3} a x^{3}, \& c \\ & \hline \end{aligned}$
$y=$	$\begin{aligned} & a+x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{5} x^{4}, 8 c \\ &+a x+a x^{2}+\frac{2}{3} a x^{3}+\frac{5}{5} 2 x^{4}, \delta d c . \\ & \hline \end{aligned}$

40. And it is to be obferved, that when the Quantity to be extracted is affected with a Fractional Dimenfion, (as you fee in the fourth of the preceding Examples,) then it is convenient to take Unity, or fome other proper Number, for its firft Term. And indeed this is neceflary, when to obtain the Value of that fractional Dimenfion, the Root cannot otherwife be extracted, becaufe of the negative Sign; as alfo when there are no Terms to be difpofed in the firft or capital Clafs, from which that initial Term may be deduced.

4I. And thus at laft I have compleated this moft troublefome and of all others moft difficult Problem, when only two flowing Quantities, together with their Fluxions, are comprehended in an Equation. But befides this general Method, in which I have taken in all the Difficulties, there are others which are generally fhorter, by which the Work may often be eafed; to give fome Specimens of which, ex abundanti, perhaps will not be difagreeable to the Reader.
42. I. If it happen that the Quantity to be refolved has in fome places negative Dimenfions, it is not of abfolute neceflity that therefore the Equation fhould be reduced to another form. For thus, the Equation $y=\frac{1}{y}-x x$ being propofed, where y is of one negacive Dimenfion, I might indeed reduce it to another Form, as by writing $I+y$ for y; but the Refolution will be more expedite as you have it in the following Diagram.
43. Here affuming I for the initial Term of the Value of y_{0} I extract the reft of the Terms as before, and in the mean time I deduce from thence, by degrees, the Value of $\frac{1}{y}$ by Divifion, and infert it in the Value of the marginal Term.
44. II. Neither is it neceffary that the Dimenfions of the other flowing Quantity hould be always affirmative. For from the Equation $y=3+2 y-\frac{y y}{x}$, without the prefcribed Reduction of the Term $\frac{y y}{x}$, there will arife $y=3 x-\frac{3}{2} x x+2 x^{3}, \delta x$.
45. And from the Equation $y=-y+\frac{1}{x}-\frac{1}{x \cdot x}$, the Value of y will be found $y=\frac{1}{x}$, if the Operation be perform'd afte: the Manner of the following Specimen.

$-\frac{1}{1}+\frac{1}{x x}+\frac{1}{x}$	
Sum	$\frac{1}{x}-\frac{1}{x}$
$y=$	$\frac{1}{x}$
1	0

46. Here we may obferve by the way, that among the infinite manners by which any Equation may be refolved, it ofien happens that there are fome, that terminate at a finite Value of the Quantity to be extracted, as in the foregoing Example. And there are not difficult to find, if fome Symbol be aftumed for the firf Term. For when the Refolution is perform'd, then fome proper Value may be given to that Symbol, which may render the whole finite.
47. III. Again, if the Value of y is to be extracted from this Equation $j=\frac{v}{2 x}+1-2 x+\frac{1}{2} \lambda x$, it may be done conveniently enough, without any Reduction of the Term $\frac{y}{2 x}$, by fuppofing (after the manner of Analyfts,) that to be given which is required. Thus for the firit Term of the Value of y I put $2 e x$, taking $2 e$ for the numeral Coefficient which is yet unknown. And fubftituting $2 e x$ inftead of y, in the marginal Term, there arifes e, which I write on the right-hand; and the Sum $1+e$ will give $x+e x$ for the fame firf Term of the Value of y, which I had firft reprefented by the Term 2ex. Therefore I make $2 e x=x+e x$, and thence I deduce $e=1$. So that the firft Term 2ex of the Value of y is $2 x$. After the fame manner I make ufe of the fictitious Term $2 f x^{2}$ to reprefent the fecond Term of the Value of y, and thence at laft I derive - $\frac{2}{3}$ for the Value of f, and therefore that fecond Term is - $\frac{4}{3} \times x$. And fo the fictitious Coefficient g in the third Term will give $\frac{T}{T \sigma}$, and b in the fourth Term will be o. Wherefore fince there are no other Terms remaining, I conclude the work is finifh'd, and that the Value of y is exactly $2 x-\frac{4}{3} x^{2}$. $+\frac{2}{5} x^{3}$. See the Operation in the following Diagram.

	$1-2 x+\frac{2}{2} x x$		
$\frac{y}{2 x}$	$e+f x+g x x+b x^{3}$		
Sum	$\begin{aligned} & +1-2 x+\frac{1}{2} x x \\ & +e+f x+g x^{2}+b x^{3} \end{aligned}$		
Hypothetically $y=$ Confequentially $y=$ Real Value $\quad=$	$\begin{aligned} & 2 e x+2 f x^{2}+2 g x^{3}+2 b x^{4} \\ & \\| \\| \\ &+x-x^{2}+\frac{1}{6} x^{3}+\frac{2}{4} b x^{4} \\ &+ e x+\frac{5}{2} f x^{2}+\frac{5}{3} 5 x^{3} \\ & 2 x-\frac{4}{3} x^{2}+\frac{1}{5} x^{3} \end{aligned}$		

48. Much after the fame manner, if it were $\dot{y}=\frac{3 y}{4 x}$; fuppofe $y=e x^{s}$, where e denotes the unknown Coefficient, and s the number of Dimenfions, which is alfo unknown. And exs being fub. fituted for y, there will arife $y=\frac{3^{e x^{x-2}}}{4}$, and thence again $y=$ $\frac{3 e x^{s}}{45}$. Compare there two Values of y, and you will find $\frac{3 e}{45}=e$, and therefore $s=\frac{3}{4}$, and e will be indefinite. Therefore affuming e at pleafure, you will have $y=e x^{3}$.
49. IV. Sometimes alfo the Operation may be begun from the higheft Dimenfion of the equable Quantity, and continually proceed to the lower Powers. As if this Equation were given, $y=$ $\frac{y}{x x}+\frac{1}{x x}+3+2 x-\frac{4}{x}$, and we would begin from the higheft Term $2 x$, by difpofing the capital Series in an order contrary to the foregoing ; there will arife at laft $y=x x+4 x-\frac{1}{x}$, \&cc, as may be feen in the form of working here fet down.

$+\frac{y}{x x}$	* $+1+\frac{4}{x}{ }^{*}-\frac{1}{x^{3}}+\frac{1}{2 x^{4}}, ~ \& c \mathrm{c}$.
Sum	$+2 x+4 *+\frac{1}{2 x}-\frac{1}{2^{3}}+\frac{1}{2 x 4}, 8$ c.
$y=$	$x^{2}+4 x *-\frac{1}{x}+\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}, 8 \mathrm{c}$.

50. And here it may be obferved by the way, that as the Operation proceeded, I might have inferted any given Quantity between the Terms $4 x$ and $-\frac{1}{x}$, for the intermediate Term that is deficient, and fo the Value of y might have been exhibited an infinite variety of ways.

5I. V. If there are befides any fractional Indices of the Dimenfions of the Relate Quantity, they may be reduced to Integers by fuppofing that Quantity, which is affected by its fractional Dmenfion, to be equal to any third Fluent ; and then by fubftitutirg that Quantity, as alfo its Fluxion, arifing from that fictitious Equation, inftead of the Relate Quantity and its Fluxion.
52. As if the Equation $\dot{y}=3 x y^{\frac{2}{3}}+y$ were propofed, where the Relate Quantity is affected with the fractional Index $\frac{2}{3}$ of its Dimenfion; a Fluent \approx being affumed at pleafure, fuppofe $y^{\frac{1}{3}}=\approx$, or $y=z^{3}$; the Relation of the Fluxions, by Prob. I. will be $y=3 \dot{z} z^{2}$. Therefore fubftituting $3 \dot{z} z^{2}$ for y, as alfo z^{3} for y, and z^{2} for $y^{\frac{2}{3}}$, there will arife $3 z z^{2}=3 x z^{2}+z^{3}$, or $z=x+\frac{1}{3} z$, where \approx performs the office of the Relate Quantity. But after the Value of z is extracted, as $z=\frac{1}{2} x^{2}+\frac{x^{3}}{18}+\frac{x^{4}}{216}+\frac{x^{3}}{3240}, \& c$. inftead of z reftore $y^{\frac{1}{3}}$, and you will have the defired Relation between x and y; that is, $y^{\frac{1}{3}}=\frac{1}{2} x^{2}+\frac{1}{15} x^{3}+\frac{1}{2} \frac{1}{2} x^{4}$, \&c. and by Cubing each fide, $y=\frac{\frac{1}{8}}{8} x^{6}+\frac{\frac{1}{2}}{\frac{1}{7}} x^{7}+\frac{1}{2} \frac{1}{8} x^{2}, 8 \mathrm{xc}$.
53. In like manner if the Equation $y=\sqrt{ } 4 y+\sqrt{ } x y$ were given, or $y=2 y^{\frac{1}{2}}+x^{\frac{1}{2} y^{\frac{1}{2}}}$; I make $z=y^{\frac{1}{2}}$, or $z z=y$, and thence by Prob. 1. $2 z z=y$, and by confequence $2 z z=2 z+x^{\frac{1}{2}} \approx$, or $\approx=1+\frac{1}{2} x^{\frac{1}{2}}$. Therefore by the firft Cafe of this 'tis $z=x+$ $\frac{1}{3} x^{\frac{3}{2}}$, or $y^{\frac{1}{2}}=x+\frac{1}{3} x^{\frac{3}{2}}$, then by fquaring each fide, $y=x x+\frac{2}{3} x^{\frac{5}{2}}$ $+\frac{1}{9} x^{3}$. But if you fhould defire to have the Value of y exhibited an infinite number of ways, make $z=c+x+\frac{1}{3} x^{\frac{3}{2}}$, affuming any initial Term c, and it will be $z z$, that is $y,=c^{2}+2 c x+\frac{2}{3} c x^{\frac{3}{2}}$ $+x^{2}+\frac{2}{3} x^{\frac{5}{2}}+\frac{1}{9} x^{3}$. But perhaps I may feem too minute, in treating of fuch things as will but feldom come into practice.

> Solutionof Case III.
54. The Refolution of the Problem will foon be difpatch'd, when the Equation involves three or more Fluxions of Quantities. For
between any two of thofe Quantities any Relation may be aflumed, when it is not determined by the State of the Queftion, and the Relation of their Fluxions may be found from thence; fo that either of them, together with its Fluxion, may be exterminated. For which reafon if there are found the Fluxions of three Quantities, only one Equation need to be affumed, two if there be four, and fo on ; that the Equation propos'd may finally be transform'd into another Equation, in which only two Fluxions may be found. And then this Equation being refolved as before, the Relations of the other Quantities may be difcover'd.
55. Let the Equation propofed be $2 \dot{x}-\dot{z}+j x=0$; that I may obtain the Relation of the Quantities x, y, and z, whofe Fluxions \dot{x}, \dot{y}, and \dot{z} are contained in the Equation; \dot{I} form a Relation at pleafure between any two of them, as x and y, fuppofing that $x=y$, or $2 y=a+z$, or $x=y$, , \&c. But fuppofe at prefent $x=y y$, and thence $x=2 y y$. Therefore writing $2 y y$ for x, and $y y$ for x, the Equation propofed will be transform'd into this : $4 y y-z+y y^{2}$ $\Longrightarrow 0$. And thence the Relation between y and z will arife, $2 y y+$ $\frac{1}{3} y^{3}=z$. In which if x be written for $y y$, and $x^{\frac{3}{2}}$ for y^{3}, we fhall have $2 x+\frac{1}{3} x^{\frac{3}{2}}=z$. So that among the infinite ways in which x, y, and z may be related to each other, one of them is here found, which is reprefented by thefe Equations, $x=y y, 2 y^{2}+\frac{1}{3} y^{3}$ $=z$, and $2 x+\frac{1}{3} x^{\frac{3}{2}}=z$.

DEMONSTRATION.

56. And thus we have folved the Problem, but the Demonitration is ftill behind. And in fo great a variety of matters, that we may not derive it fynthetically, and with too great perplexity, from its genuine foundations, it may be fufficient to point it out thus in fhort, by way of Analyfis. That is, when any Equation is propos'd, after you have finifh'd the work, you may try whether from the derived Equation you can return back to the Equation propos'd, by Prob. I. And therefore, the Relation of the Quantities in the derived Equation requires the Relation of the Fluxions in the propofed Equation, and contrary-wife: which was to be fhewn.
57. So if the Equation propofed were $y=x$, the derived Equation will be $y=\frac{1}{2} x^{2}$; and on the contrary, by Prob. I. we have $\dot{y}=\dot{x} x$, that is, $\dot{y}=x$, becaufe \dot{x} is fuppofed Unity. And thus from
from $y=1-3 x+y+x x+x y$ is derived $y=x-x^{2}+\frac{1}{3} x^{3}$ $-\frac{1}{6} x^{4}+\frac{1}{3} x^{5}-\frac{1}{4} x^{6}, \&$. And thence by Prob. I. $y=1-2 x$ $+x^{2}-\frac{2}{3} x^{3}+\frac{7}{6} x^{4}-\frac{2}{5} x^{5}$, \&cc. Which two Values of y agree with each other, as appears by fubftituting $x-x x+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}$ $-\frac{1}{3}-x^{5}$, \&c. inftead of y in the firft Value.
3^{8}. But in the Reduction of Equations I made ufe of an Operation, of which alfo it will be convenient to give fome account. And that is, the Tranfmutation of a flowing Quantity by its comnexion with a given Quantity. Let AE and ae be two Lines indefinitely extended each way, along which two moving Things or Points may pafs from afar, and at the fame time may reach the places A and $a, \mathrm{~B}$ and b, C and c, D and $d, \& c$. and let B be the Point, by its diftance from which,
 the Motion of the moving thing or point in AE is eftimated ; fo that - $\mathrm{BA}, \mathrm{BC}, \mathrm{BD}, \mathrm{BE}$, fucceffively, may be the flowing Quantities, when the moving thing is in the places $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}$. Likewife let b be a like point in the other Line. Then will - BA and - ba be contemporaneous Fluents, as alfo BC and $b c, \mathrm{BD}$ and $b c, \mathrm{BE}$ and $b e, \& c$. Now if inftead of the points B and b, be fubftituted A and c, to which, as at reft, the Motions are refer'd ; then \circ and $-c a, \mathrm{AB}$ and $-c b, \mathrm{AC}$ and \circ, AD and $c d$, AE and $c e$, will be contemporaneous flowing Quantities. Therefore the flowing Quantities are changed by the Addition and Subtraction of the given Quantities AB and $a c$; but they are not changed as to the Celerity of their Motions, and the mutual refpect of their Fluxion. For the contemporaneous parts AB and $a b, \mathrm{BC}$ and $b c$, CD and $c d, \mathrm{DE}$ and $d e$, are of the fame length in both cafes. And thus in Equations in which thefe Quantities are reprefented, the contemporaneous parts of Quantities are not therefore changed, notwithftanding their abfolute magnitude may be increafed or diminifhed by fome given Quantity. Hence the thing propofed is manifeft : For the only Scope of this Problem is, to determine the contemporaneous Parts, or the contemporary Differences of the abfolute Quantities v, x, y, or \approx, defcribed with a given Rate of Flowing. And it is all one of what abfolute magnitude thofe Quantities are, fo that their contemporary or correfpondent Differences may agree with the propofed Relation of the Fluxions.
58. The reafon of this matter may alfo be thus explain'd Algebraically. Let the Equation $y=x x y$ be propofed, and fupG 2
pore $x=1+z$. Then by Prob. I. $\dot{x}=\dot{z}$. So that for $\dot{y}=\dot{x} x y$, may be wrote $\dot{y}=\dot{x} y+\dot{x} z y$. Now fence $\dot{x}=\dot{z}$, it is plain, that though the Quantities x and z be not of the fame length, yet that they flow alike in respect of y, and that they have equal contemporaneous parts. Why therefore may I not reprefent by the fame Symbols Quantities that agree in their Rate of Flowing; and to determine their contemporaneous Differences, why may not I fe $\dot{y}=\dot{x} y+\dot{x} x y$ instead of $y=\dot{x} x y$?
59. Lattly it appears plainly in what manner the contemporary parts may be found, from an Equation involving flowing Quantities. Thus if $y=\frac{1}{x}+x$. be the Equation, when $x=2$, then $y=2 \frac{1}{2}$. But when $x=3$, then $y=3 \frac{1}{3}$. Therefore while x flows from 2 to $3, y$ will flow from $2 \frac{1}{2}$ to $3 \frac{1}{3}$. So that the parts defcribed in this time are $3-2=\mathrm{I}$, and $3 \frac{1}{3}-2 \frac{1}{2}=\frac{5}{5}$.

6 r. This Foundation being thus laid for what follows, I hall now proceed to more particular Problems:

See Simpsons Doctrine \&Amplicalion of P R O B. III:

I. When a Quantity is the greatest or the leaf that it can be, at that moment it neither flows backwards or forwards. For if it flows forwards, or increafes, that proves it was.lefs, and will prefently be greater than it is. And the contrary if it flows backwards, or decreafes. Wherefore find its.Fluxion, by Prob. I. and fuppofe it to be nothing.
2. Exam. I. If in the Equation $x^{3}-a x^{2}+a x y-y^{3}=0$ the greater Value of. x be required; find the Relation of the Fluxions of x and y, and you will have $3 \dot{x} x^{2}-2 a x x+a x y-3 j y^{2}+a y x$ $=0$. Then making $x=0$, there will remain - $3 y^{2}+a y x=0$, or $3 y^{2}=a x$. By the help of this you may exterminate either x or y out of the primary Equation, and by the refulting Equation you may determine the other, and then both of them by $-3 y^{y^{2}}+$ $a x=0$.
3. This Operation is the fame, as if you had multiply'd the Terms of the proposed Equation by the number of the Dimenfions of the other flowing Quantity y. From whence we may derive the famous
famous Rule of Huddenius, that, in order to obtain the greateft or leaft Relate Quantity, the Equation muft be difpofed according to the Dimenfions of the Correlate Quantity, and then the Terms are to be multiply'd by any Arithmetical Progreffion. But fince neither this Rule, nor any other that I know yet publifhed, extends to Equations affected with furd Quantities, without a previous Reduction; I fhall give the following Example for that purpofe.
4. Examp. 2. If the greateft Quantity y in the Equation x^{3} $a y^{2}+\frac{b_{y} 3}{a+y}-x x \sqrt{a y+x x}=0$. be to be determin'd, feek the Fluxions of x and y, and there will arife the Equation $3 x x^{2}-2 a y y+$ $\frac{3 a b \dot{y}^{2}+2 \dot{b} \dot{y}^{3}}{a^{2}+2 a y+y^{2}}-\frac{4 a \dot{x} x y+6 \dot{x} x^{3}+a j x^{2}}{2 \sqrt{a y+x x}}=0$. And fince by fuppofition $\dot{y}=0$, omit the Terms multiply'd by \dot{y}, (which, to Thorten the labour, might have been done before, in the Operation,) and divide the reft by $\dot{x} x$, and there will remain $3 x-\frac{2 a y+3 x x}{\sqrt{a y+x x}}=0$. When the Reduction is made, there will arife $4 a y+3 x x=0$, by help of which you may exterminate either of the quantities x or y out of the propos'd Equation, and then from the refulting Equation, which will be Cubical, you may extract the Value of the other.
5. From this Problem may be had the Solution of thefe following.
I. In a given. Triangle, or in a Segment of any given Curve, to inforibe the greateft Rectangle.
II. To draw the greateft or the leaft right Line, which can lie between a given Point, and a Curve given in pofition. Or, to drave. a Perpendicular to a Curve from a given Point.
III. To draw the greateft or the leaft rigbt Lines, which paffing: through a given Point, can lie between two otbers, eitber right Lines or Curves.
IV. From a given Point witbin a Parabola, to drawe a right Line, which foall cut the Parabola more obliquely than any otber. And to do the fame in other Curves.
V. To detcrmine the Vertices of Curves, their greateft or leafi. Breadths, the Points in wobich revolving parts cut each other, \&c.
VI. To find the Points in Curves, cobere they bave the greateff ${ }^{\circ}$ or leaft Curvature.
VII. To fund the lealt Angle in a given Ellipfis, in which the. Ordinates can cui their Diameters.
VIII. Of Ellipfes that pals through four given Points, to determine the greateft, or that zebich approacbes neareft to a Circle.
IX. To determine fuch a part of a Spherical Superficies, which can be ilhuminated, in its farther part, by Light coming from a great difance, and sobich is refracted by the nearer Hemijpliere.

And many other Problems of a like nature may more eafily be propofed than refolved, becaufe of the labour of Computation.

P R O B. IV.

To draw Tangents to Curves.
Firf Manner.
I. Tangents may be varioufly drawn, according to the various Relations of Curves to right Lines. And firft let BD be a right Line, or Ordinate, in a given Angle to another right Line $A B$, as a Bafe or $\mathrm{Ab}-$ fcifs, and terminated at the Curve ED. Let this Ordinate move through an indefinitely finall Space to the place $b d$, fo that it may be increafed by the Moment $c d$, while AB is increafed by the Moment
 $\mathrm{B} b$, to which $\mathrm{D} c$ is equal and parallel.
Let $\mathrm{D} d$ be produced till it meets with AB in T , and this Line will touch the Curve in D or d; and the Triangles $d c \mathrm{D}$, DBT will be fimilar. So that it is $\mathrm{TB}: \mathrm{BD}:: \mathrm{D} c$ (or $\mathrm{B} b$) : cd.
2. Since therefore the Relation of $B D$ to $A B$ is exhibited by the Equation, by which the nature of the Curve is determined ; feek for the Relation of the Fluxions, by Prob. I. Then take TB to BD in the Ratio of the Fluxion of $A B$ to the Fluxion of BD, and TD will touch the Curve in the Point D.
3. Ex. 1. Calling $\mathrm{AB}=x$, and $\mathrm{BD}=y$, let their Relation be $x^{5}-a x^{2}+a x y-y^{3}=0$. And the Relation of the Fluxions will be $3 x x^{2}-2 a x x+a x y-3 y y^{2}+a y x=0$. So that $y: x:: 3 x x$ $-2 a x+a y: 3 y^{2}-a x:: \mathrm{BD}(y): \mathrm{BT}$. Therefore $\mathrm{BT}=$ $\frac{3 y^{3}-a x y}{3 x^{2}-2 a x+a y}$. Therefore the Point D being given, and thence DB and $A B$, or y and x, the length $B T$ will be given, by which the Tangent TD is determined.
4. But this Method of Operation may be thus concinnated. Make the Terms of the propofed Equation equal to nothing: multiply by the proper number of the Dimenfions of the Ordinate, and put the Refult in the Numerator: Then multiply the Terms of the fame Equation by the proper number of the Dimenfions of the Abfcifs, and put the Product divided by the Abrcifs, in the Denominator of the Value of BT. Then take BT towards A, if its Value be affirmative, but the contrary way if that Value be negative.
5. Thus the Equation ${ }^{0} x^{3}-a x^{2}+a x_{1}^{1} y-y_{0}^{3}=0$, being multiply'd by the upper Numbers, gives $a x y-3 y^{3}$ for the Numerator ; and multiply'd by the lower Numbers, and then divided by x, gives $3 x^{2}-2 a x+a y$ for the Denominator of the Value of BT.
6. Thus the Equation $y^{3}-b y^{2}-c d y+b c d+d x y=0$, (which denotes a Parabola of the fecond kind, by help of which Des Cartes confructed Equations of fix Dimenfions; fee his Geometry, p. 42. Amferd. Ed. Anr. I6 59.) by Infpection gives $\frac{33^{3}-2 b y^{2}-c d y+d x y}{d y}$, or $\frac{3 w}{d}-\frac{2 b y}{d}-c+x=\mathrm{BT}$.
7. And thus $a^{2}-\frac{r}{q} x^{2}-y^{2}=0$, (which denotes an Ellipfis whofe Center is A ,) gives $\frac{-2 y y}{-\frac{2 r}{q} x}$, or $\frac{q y}{r x}=\mathrm{BT}$. And fo in others.
8. And you may take notice, that it matters not of what quantity the Angle of Ordination ABD may be.
9. But as this Rule does not extend to Equations affected by furd Quantities, or to mechanical Curves; in thefe Cafes we muft have recourfe to the fundamental Method.
10. Exं. 2. Let $x^{3}-a y^{2}+\frac{b, \frac{3}{3}}{a+y}-x x \sqrt{a y+x x}=0$ be the Equation expreffing the Relation between AB and BD ; and by Prob.r. the Relation of the Fluxions will be $3 \dot{x} x^{2}-2 a \dot{y} y+\frac{3 a b \dot{y}^{2}+2 b j^{3}}{a a+2 a y+j y}$ $\frac{-4 a \dot{x} x y-6 \dot{x} x^{3}-c \dot{y} x^{2}}{2 \sqrt{a y+x x}}=0$. Therefore it will be $3 x x \frac{-4 a x y-6 x^{3}}{2 \sqrt{a y+x}}$: $2 a y \frac{-3 a b y+2 b_{3}^{3}}{a a+2 a y+y y}+\frac{a x x}{2 \sqrt{a y}+x: x}::(\dot{y}: \dot{x}::) \mathrm{BD}: \mathrm{BT}$.
II. Ex. 3. Let ED be the Conchoid of Nicomedes, defcribed with the Pole G, the Afymptote AT, and the Diftance LD ; and let

$\mathrm{GA}=b, \mathrm{LD}=c, \mathrm{AB}=x$, and $\mathrm{BD}=y$. And becaufe of fimilar Triangles DBL and DMG, it will be LB : BD :: DM : MG; that is, $\sqrt{c c-y y}: y:: x: b+y$, and therefore $\overline{b+y} \sqrt{c c-y y}$ $=y x$. Having got this Equation, I fuppofe $\sqrt{c c-y y}=\dot{z}$, and thus I fhall have two Equations $b z+y z=y x$, and $z z=c c-y y$. By the help of thefe I find the Fluxions of the Quantities x, y, and z, by Prob. I. From the firft arifes $b z+y z+y z=y x+x y$, and from the fecond $2 \dot{z} z=-2 \dot{y} y$, or $z z+\dot{y}=0$. Out of there if we exterminate \dot{z}, there will arife $-\frac{b i y}{z}-\frac{j^{2}}{z}+j z=j x$ $+\dot{x} y$, which being refolved it will be $y: z-\frac{b_{y}}{z}-\frac{y}{z}-x::$ ($y: \dot{x}::$) $\mathrm{BD}: \mathrm{BT}$. But as BD is y, therefore $\mathrm{BT}=z-x$ $\frac{-b y-y y}{z}$. That is, $-\mathrm{BT}=\mathrm{AL}+\frac{\mathrm{BD} \times \mathrm{GM}}{\mathrm{BL}}$; where the Sign prefixt to BT denotes, that the Point T muft be taken contrary to the Point A.
12. Scholium. And hence it appears by the bye, how that point of the Conchoid may be found, which feparates the concave from the convex part. For when AT is the leaft poffible, D will be that point. Therefore make $A T=v$; and fince $B T=-z$ $+x+\frac{b y+y y}{z}$, then $v=-z+2 x+\frac{b y+y y}{z}$. Here to fhorten the work, for x fubftitute $\frac{b z+y z}{y}$, which Value is derived from what is before, and it will be $\frac{2 b z}{y}+z+\frac{b y+y y}{z}=v$. Whence the Fluxions v, y, and z being found by Prob. I. and fuppofing $\dot{v}=0$,
by Prob. 3. there will arife $\frac{2 \dot{b} \dot{z}}{y}-\frac{2 b \dot{y} z}{y y}+\dot{z}+\frac{b \dot{y}+2 \dot{y} y}{z}-\frac{b z y+z i y}{z z}=\dot{v}=0$. Laftly, fubftituting in this $\frac{-y y}{z}$ for \dot{z}, and $c c-y y$ for $z z$, (which values of \dot{z} and $z z$ are had from what goes before, and making a due Reduction, you will have $y^{3}+3 b y^{2}-2 b c^{2}=0$. By the Conftruction of which Equation y or AM, will be given. Then thro' M drawing $M D$ parallel to $A B$, it will fall upon the Point D of contrary Flexure.
13. Now if the Curve be Mechanical whofe Tangent is to be drawn, the Fluxions of the Quantities are to be found, as in Examp.5. of Prob. I. and then the reft is to be perform'd as before.
14. Ex. 4. Let $A C$ and $A D$ be two Curves, which are cut in the Points C and D by the right Line $B C D$, apply'd to the Abfcifs $A B$ in a given Angle. Let $\mathrm{AB}=x, \mathrm{BD}=y$, and $\frac{\text { Area } A C B}{1}=z$. Then (by Prob. 1 . Preparat. to Examp. 5.) it will be $\dot{z}=\dot{x}$
 $\times \mathrm{BC}$.
15. Now let AC be a Circle, or any known Curve ; and to determine the other Curve AD, let any Equation be propofed, in which z is involved, as $z z+a x z=y^{4}$. Then by Prob. 1. $2 z z+a x z$ $+a \dot{x} z=4 \dot{y} y^{3}$. And writing $x \times \mathrm{BC}$ for \dot{z}, it will be $2 \dot{x} z \times \mathrm{BC}$ $+a \dot{x} x \times \mathrm{BC}+a \dot{x} z=4 y^{y^{3}}$. Therefore $2 z \times \mathrm{BC}+a x \times \mathrm{BC}+$ $a z: 4 y^{3}::(\dot{y}: \dot{x}::) \mathrm{BD}: \mathrm{BT}$. So that if the nature of the Curve AC be given, the Ordinate BC , and the Area ACB or \approx; the Point T will be given, through which the Tangent DT will pafs.
16. After the fame manner, if $3 z=2 y$ be the Equation to the Curve AD ; 'twill be $(3 \dot{z}) 3 \dot{x} \times \mathrm{BC}=2 \dot{y}$. So that $3 \mathrm{BC}: 2::$ ($y: x::$) $\mathrm{BD}: \mathrm{BT}$. And fo in others.
17. Ex. 5. Let $\mathrm{AB}=x, \mathrm{BD}=y$, as before, and let the length of any Curve AC be z. And drawing a Tangent to it, as $\mathrm{C} t$, 'twill be $\mathrm{B} t: \mathrm{C} t:: \dot{x}: \dot{z}$, or $\dot{z}=\frac{\dot{x} \times \mathrm{C} t}{\mathrm{~B} t}$.
18. Now for determining the other Curve AD, whofe Tangent is to be drawn, let there be given any Equation in which z is in volved, fuppofe $z=y$. Then it will be $z=y$, fo that $\mathrm{C} t: \mathrm{B} t::$ ($y: x::$) : BD : BT. But the Point T being found, the Tarigent DT may be drawn.
19. Thus fuppofing $x z=y y$, 'twill be $\dot{x} z+\dot{z} x=2 y \dot{y}$; and for \dot{z} writing $\frac{x \times C_{t}}{B_{t}}$, there will arife $\dot{x} z+\frac{\dot{x}_{x} \times \mathrm{C}_{t}}{B_{t}}=2 \dot{y} y$. Therefore $z+\frac{x \times \mathrm{C}_{t}}{\mathrm{~B}_{t}}: 2 y:: \mathrm{BD}: \mathrm{DT}$.
20. Ex. 6. Let AC be a Circle, or any other known Curve, whofe Tangent is $\mathrm{C} t$, and let AD be any other Curve whofe Tangent DT is to be drawn, and let it be defin'd by affuming $A B=$ to the Arch $A C$; and ($C E, B D$ being Ordinates to $A B$ in a given Angle,) let the Relation of BD to CE or AE be
 exprefs'd by any Equation.
21. Therefore call AB or $\mathrm{AC}=x, \mathrm{BD}=y, \mathrm{AE}=z$, and $\mathrm{CE}=v$. And it is plain that \dot{v}, \dot{x}, and \dot{z}, the Fluxions of CE , AC , and AE , are to each other as $\mathrm{CE}, \mathrm{C} t$, and $\mathrm{E} t$. Therefore $\dot{x} \times$ $\frac{C E}{C_{t}}=\dot{v}$, and $\dot{x} \times \frac{\mathrm{E} t}{\mathrm{C}_{t}}=\dot{z}$.
22. Now let any Equation be given to define the Curve $A D$, as $y=z$. Then $\dot{j}=\dot{z}$; and therefore $\mathrm{E} t: \mathrm{C} t::(\dot{y}: \dot{x}::)$ BD : BT.
23. Or let the Equation be $y=z+v-x$, and it will be $\dot{y}=\left(\dot{v}+\ddot{z}-\dot{x}=\dot{x} \times \frac{\mathrm{CE}+\mathrm{E} t-\mathrm{C} t}{\mathrm{C} t}\right.$. And therefore $\mathrm{CE}+\mathrm{E} t$ $-\mathrm{C} t: \mathrm{C} t::(\dot{y}: \dot{x}::) \mathrm{BD}: \mathrm{BT}$.
24. Or finally, let the Equation be ayy $=v^{3}$, and it will be $2 a y y=\left(3 \dot{v} v^{2} \Longrightarrow\right) 3 x v^{2} \times \frac{C E}{C t}$. So that $3 v^{2} \times C E: 2 a y \times C t::$ BD : BT.
25. Ex. 7. Let FC be a Circle, which is touched by CS in C ; and let FD be a Curve, which is defined by affuming any Relation of the Ordinate DB to the Arch FC, which is intercepted by DA drawn to the Center. Then letting fall CE, the Ordinate in the Circle, call AC or $\mathrm{AF}=1, \mathrm{AB}$ $=x, \mathrm{DB}=y, \mathrm{AE}=z, \mathrm{CE}=v$, $\mathrm{CF}=t$; and it will be $\dot{t} z=\left(\dot{t} \times \frac{\mathrm{CE}}{\mathrm{LS}}=\right)$
 \dot{v}, and $-\dot{t} v=\left(\dot{t} \times \frac{-\mathrm{ES}}{\mathrm{CS}} \Longrightarrow\right) \dot{z}$. Here I put \dot{z} negatively, becaufe AE is diminifh'd while EC is increafed. And befides AE : EC :: AB :
$\mathrm{AB}: \mathrm{BD}$, fo that $z y=v x$, and thence by Prob. r. $\dot{z} y+y z$ $=\dot{v x}+\dot{x} v$. Then exterminating \dot{v}, \dot{z}, and v, 'tis $j x$ - $\dot{t y} y^{2}$ $x_{x}=x y$.
26. Now let the Curve DF be defined by any Equation, from which the Value of t may be derived, to be fubftituted here. Suppofe let $t=y$, (an Equation to the firft Quadratrix,) and by Prob. I. it will be $t=y$, fo that $y x-y y^{2}-j x^{2}=x y$. Whence $y: x x$ $+y y-x::(y:-\dot{x}::) \mathrm{BD}(y): \mathrm{BT}$. Therefore $\mathrm{BT}=x^{2}$ $+y^{2}-x$; and $\mathrm{AT}=x \cdot x+y=\frac{\mathrm{AD}_{q}}{\mathrm{AF}}$.
27. After the fame manner, if it is $t=b y$, there will arile $2 t t=b y$; and thence $A T=\frac{b}{2 t} \times \frac{A D_{7}}{A F}$. And fo of others.
28. Ex. 8. Now if AD be taken equal to the Arch FC, the Curve ADH being then the Spiral of Arcbimedes; the fame names of the Lines ftill remaining as were put afore: Becaufe of the right Angle ABD 'tis $x x+y y=t t$, and therefore (by Prob. I.) $\dot{x} x+j y=i t$. 'Tis alfo $\mathrm{AD}: \mathrm{AC}::$ $\mathrm{DB}:(\mathrm{E}$, fo that $t v=y$, and thence (by Prob.r.) $i v+\dot{v} t=\dot{y}$. Laftly, the Fluxion of the Arch FC is to the Fluxion of the right Line CE , as AC to AE , or as AD to AB , that is, $\dot{t}: \dot{v}:: t: x$, and thence
 $\dot{t} x=\dot{v}$. Compare the Equations now found, and you will fee 'tis $t v+\dot{t} x=\dot{y}$, and thence $\dot{x} x+j y=(\dot{t} \Rightarrow) \frac{y^{\prime}}{v+x}$. And therefore compleating the Parallelogram ABDQ, if you make QD : $\mathrm{Q} P::(\mathrm{BD}: \mathrm{BT}:: \dot{y}:-\dot{x}::) x: y-\frac{1}{v+x}$; that is, if you take $\mathrm{AP}=\frac{t}{v+x}, \mathrm{PD}$ will be perpendicular to the Spiral.
29. And from hence (I imagine) it will be fufficiently manifert, by what methods the Tançenis of all forts of Curves are to be drawn. However it may not be foreign from the purpofe, if I alfo fhew how the Problem may be perform'd, when the Curves are refer'd to right Lines, after any other manncr whatever: So that having the choice of feveral Methods, the eafieft and moft fimple may always be ufed.

Second Manner.

30. Let D be a point in the Curve, from which the Subtenfe DG is drawn to a given Point G, and let DB be an Ordinate in any given Angle to the Abfcifs $A B$. Now let the Point D flow for an infinitely fmall fpace $\mathrm{D} d$ in the Curve, and in GD let $\mathrm{G} k$ be taken equal to $\mathrm{G} d$, and let the Parallelogram $d c \mathrm{~B} b$ be compleated. Then $\mathrm{D} k$ and $\mathrm{D} c$ will be the contemporary Mo. ments of GD and BD, by which they
 are diminifh'd while D is transfer'd to d. Now let the right Line $\mathrm{D} d$ be produced, till it meets with AB in T , and from the Point T to the Subtenfe GD let fall the perpendicular TF, and then the Trapezia $\mathrm{D} c d k$ and DBTF will be like; and therefore $\mathrm{DB}: \mathrm{DF}:: \mathrm{D} c: \mathrm{D} k$.
31. Since then the Relation of BD to GD is exhibited by the Equation for determining the Curve ; find the Relation of the Fluxions, and take FD to DB in the Ratio of the Fluxion of GD to the Fluxion of BD. Then from F raife the perpendicular F'T, which may meet with AB in T, and DT being drawn will touch the Curve in D. But D'T muft be taken towards G , if it be affirmative, and the contrary way if negative.
32. Ex. i. Call $\mathrm{GD}=x$, and $\mathrm{BD}=y$, and let their Relation be $x^{3}-a x^{2}+a x y-y^{3}=0$. Then the Relation of the Fluxions will be $3 x x^{2}-2 a x x+a x y+a y x-3 y y^{2}=0$. Therefore $3 x x$ $-2 a x+a y: 3 y y-a x::(y: \dot{x}::) \mathrm{DB}(y): \mathrm{DF}$. So that $\mathrm{DF}=\frac{2 y^{3}-a x y}{3 x^{2}-2 a x+a y}$. Then any Point D in the Curve being given, and thence BD and GD or y and x, the Point F will be given alfo. From whence if the Perpendicular FT be raifed, from its concourfe T with the Abfcifs $A B$, the Tangent $D T$ may be drawn.
33. And hence it appears, that a Rule might be derived here, as well as in the former Cafe. For having difpofed all the Terms of the given Equation on one fide, multiply by the Dimenfions of the Ordinate y, and place the refult in the Numerator of a Fraction. Then multiply its Terms feverally by the Dimenfions of the Subtenfe x, and dividing the refult by that Subtenfe x, place the Quotient in the Denominator of the Value of DF. And take the fame Line DF towards G if it be affirmative, otherwile the contrary way. Where
you may obferve, that it is no matter how far diftant the Point G is from the $A b f c i f s ~ A B$, or if it be at all diftant, nor what is the Angle of Ordination ABD.
34. Let the Equation be as before $x^{3}-a x^{2}+a x y-y^{3}=0$; it gives immediately $a x y-3 y^{3}$ for the Numerator, and $3 x^{2}-2 a x$ +ay for the Denominator of the Value of DF.
35. Let alfo $a+\frac{b}{a} x-y=0$, (which Equation is to a Conick Section,) it gives - y for the Numerator, and $\frac{b}{a}$ for the Denominator of the Value of DF , which therefore will be - $\frac{a y}{b}$.
36. And thus in the Conchoid, (wherein thefe things will be perform'd more expeditioufly than before,) putting GA $=b$,

$\mathrm{LD}=c, \mathrm{GD}=-x$, and $\mathrm{BD}=y$, it will be $\mathrm{BD}(y): \mathrm{DL}(c)::$ GA (b): GL $(x-c)$. Therefore $x y-c y=c b$, or $x y-c y-$ $c b=0$. This Equation according to the Rule gives $\frac{x y-y}{y}$, that is, $x-c=\mathrm{DF}$. Therefore prolong GD to F , fo that $\mathrm{DF}=$ LG, and at F raife the perpendicular FT meeting the Alymptote $A B$ in T, and DT being drawn will touch the Conchoid.
37. But when compound or furd Quantities are found in the Equation, you muft have recourfe to the general Method, except you fhould chufe rather to reduce the Equation.
38. Ex. 2. If the Equation $\overline{b+y} \times \sqrt{c c-y y} \Longrightarrow y x$, were given for the Relation between GD and BD; (fee the foregoing Figure, p. 52.) find the Relation of the Fluxions by Prob. I. As fuppofing $\sqrt{c c-y y}=\approx$, you will have the Equations $b z+y z=y x$, and $c c-y y=z z$, and thence the Relation of the Fluxions $b z+y z$ $y z=y x+y x$, and $-2 y y=2 z z$. And now \dot{z} and z being
exterminated, there will arife $y \sqrt{c c-y y}-\frac{b y+y^{2}}{\sqrt{c-y y}}-j x=\dot{x}$. Therefore $y: \sqrt{c c-y y}-\frac{b_{1}+y}{\sqrt{c-y}}-x::(y: x::) \mathrm{BD}(y): \mathrm{DF}$.

Third Manner.

39. Moreover, if the Curve be refer'd to two Subtenfes AD and BD, which being drawn from two given Points A and B, may meet at the Curve: Conceive that Point D to flow on through an infinitely little Space $\mathrm{D} d$ in the Curve; and in AD and BD take $\mathrm{A} k=\mathrm{A} d$, and $\mathrm{Bc}=\mathrm{B} d$; and then $k \mathrm{D}$ and $c \mathrm{D}$ will be contemporaneous Moments of the Lines AD and BD. Take therefore DF to BD in the Ratio of the Moment $D k$ to the
 Moment $\mathrm{D} c$, (that is, in the Ratio of the Fluxion of the Line AD to the Fiuxion of the Line BD,) and draw BT , FT perpendicular to BD, AD, meeting in T . Then the Trapezia DFTB and Dkdc will be fimilar, and therefore the Diagonal DT will touch the Curve.
40. Therefore from the Equation, by which the Relation is defined between $A D$ and $B D$, find the Relation of the Fluxions by Prob. I. and take FD to BD in the fame Ratio.
41. Examp. Suppofing $\mathrm{AD}=x$, and $\mathrm{BD}=y$, let their Relation be $a+\frac{e x}{d}-y=0$. This Equation is to the Ellipfes of the fecond Order, whofe Properties for Refracting of Light are fhewn by Des Cartes, in the fecond Book of his Geometry. Then the Relation of the Fluxions will be $\frac{e x}{d}-\dot{y}=0$. 'Tis therefore e : $d::(\dot{y}: \dot{x}::) \mathrm{BD}: \mathrm{DF}$.
42. And for the fame reafon if $a-\frac{e x}{d}-y=0$, 'twill be $e:-d:: \mathrm{BD}: \mathrm{DF}$. In the firft Cafe take DF towards A , and contrary-wife in the other cafe.
43. Corol. r. Hence if $d=e$, (in which cafe the Curve becomes a Conick Section,) 'twill be $\mathrm{DF}=\mathrm{DB}$. And therefore the Triangles DFT and DBT being equal, the Angle FDB will be bifected by the Tangent.

44. Corol. 2. And hence alfo thofe things will be manifeft of themfelves, which are demonftrated, in a very prolix manner, by Des Cartes concerning the Refraction of thefe Curves. For as much as DF and DB , (which are in the given Ratio of d to c,) in refpect of the Radius DT, are the Sines of the Angles DTF and DTB, that is, of the Ray of Incidence AD upon the Surface of the Curve, and of its Reflexion or Refraction DB. And there is a like reafoning concerning the Refractions of the Conick Sections, fuppofing that either of the Points A or B be conceived to be at an infinite diftance.
45. It would be eafy to modify this Rule in the manner of the foregoing, and to give more Examples of it: As alfo when Curves are refer'd to Right lines after any other manner, and cannot commodioully be reduced to the foregoing, it will be very eafy to find out other Methods in imitation of thefe, as occafion fhall require.

Fourtb Manner.

46. As if the right Line BCD fhould revolve about a given Point B , and one of its Points D fhould defcribe a Curve, and another Point C fhould be the interfection of the right Line BCD, with another right Line AC given in pofition. Then the Relation of BC and BD being exprefs'd by any Equation ; draw BF pa-
 rallel to AC , fo as to meet DF , perpendicular to BD , in F . Alfo erect FT perpendicular to DF; and take FT in the fame Ratio to BC, that the Fluxion of BD has to the Fluxion of BC. Then DT being drawn will touch the Curve.

Fifth Manner.

47. But if the Point A being given, the Equation mould exprefs the Relation between AC and BD; draw CG parallel to DF, and take FT in the fame Ratio to BG, that the Fluxion of BD has to the Fluxion of $A C$.

Sixth Manner.

48. Or again, if the Equation exprefles the Relation between AC and CD; let AC and FT meet in H; and take HT in the fame Ratio to BG, that the Fluxion of CD has to the Fluxion of AC. A.d the like in others.

Seventb Manner : For Spirals.
49. The Problem is not otherwife perform'd, when the Curves are refer'd, not to right Lines, but to other Curve-lines, as is ufual in Mechanick Curves. Let BG be the Circumference of a Circle, in whore Semidiameter AG, while it revolves about the Center A, let the Point D be conceived to move any how, fo as to defcribe the Spiral ADE. And fuppofe $\mathrm{D} d$ to be an infinitely little part of the Curve thro' which D flows, and in AD take $\mathrm{Ac}=\mathrm{A} d$, then $c \mathrm{D}$ and $\mathrm{G} g$ will be contemporancous Moments of the right Line AD and of the Periphery BG. Therefore draw $\mathrm{A} t$ parallel to $c d$, that is, perpendicular to AD , and let the Tangent DT meet it in T ; then it will be $c \mathrm{D}: c d:$:
 AD : AT. Alfo let $\mathrm{G} t$ be parallel to the Tangent DT, and it will be $c d: \mathrm{G} g::$ (Ad or AD : AG ::) AT : At.
50. Therefore any Equation being propofed, by which the Relation is exprefs'd between BG and AD; find the Relation of their Fluxions by Prob. 1. and take At in the fame Ratio to AD: And then $\mathrm{G} t$ will be parallel to the Tangent.
51. Ex. 1. Calling $\mathrm{BG}=x$, and $\mathrm{AD}=y$, let their Relation be $x^{3}-a x^{2}+a x y-y^{3}=0$, and by Prob. I. $3 x^{2}-2 a x+a y: 3 y^{2}$ - $a x::(y: x::) \mathrm{AD}:$ At. The Point t being thus found, draw $\mathrm{G} t$, and DT parallel to it, which will touch the Curve.
52. Ex. 2. If 'tis $\frac{a x}{b}=y$, (which is the Equation to the Spiral of Arcbimedes, 'twill be $\frac{a x}{b}=\dot{y}$, and therefore $a: b::(\dot{y}: \dot{x}::)$ AD : At. Wherefore by the way, if TA be produced to P , that it may be $\mathrm{AP}: \mathrm{AB}:: a: b, \mathrm{PD}$ will be perpendicular to the Curve.
53. Ex. 3. If $x x=b y$, then $2 x x=b y$, and $2 x: b:: \mathrm{AD}:$ At. And thus Tangents may be eafily drawn to any Spirals whatever.

Eighth Manner: For Quadratrices.
54. Now if the Curve be fuch, that any Line AGD, being drawn from the Center A, may meet the Circular Arch in G, and the Curve in D ; and if the Relation between the Arch BG, and the right Line DH, which is an Ordinate to the Bafe or Abfifs AH in a given Angle, be determin'd by any Equation whatever: Conceive the Point D to move in the Curve for an infinitely fmall Interval to d, and the Parallelogram $d b \mathrm{Hk}$ being compleat-
 ed, produce Ad to c, fo that $\mathrm{Ac}=\mathrm{AD}$; then Gg and $\mathrm{D} k$ will be contemporaneous Moments of the Arch BG and of the Ordinate DH. . Now produce $\mathrm{D} d$ ftrait on to T , where it may meet with AB , and from thence let fall the Perpendicular TF on $\mathrm{D} c \mathrm{~F}$. Then the Trapezia Dkdc and DHTF will be fimilar; and therefore $\mathrm{D} k: \mathrm{D} c:: \mathrm{DH}: \mathrm{DF}$. And befides if $\mathrm{G} f$ be raifed perpendicular to AG , and meets AF in f; becaufe of the Parallels DF and $\mathrm{G} f$, it will be $\mathrm{D} c: \mathrm{G} g:: \mathrm{DF}: \mathrm{G} f$. Therefore ex equo, 'tis $\mathrm{Dk}: \mathrm{G} g:: \mathrm{DH}: \mathrm{G} f$, that is, as the Moments or Fluxions of the Lines DH and BG.
55. Therefore by the Equation which expreffes the Relation of BG to DH , find the Relation of the Fluxions (by Prob. 1.) and in that Ratio take $\mathrm{G} f$, the Tangent of the Circle BG, to DH. Draw DF parallel to $\mathrm{G} f$, which may meet $\mathrm{A} f$ produced in F . And at F erect the perpendicular FT , meeting AB in T ; and the right Line DT being drawn, will touch the Quadratrix.
56. Ex. I. Making $\mathrm{BG}=x$, and $\mathrm{DH}=y$, let it be $x x=-b y$; then(by Prob. I.) $2 x x=b y$. Therefore $2 x: b::(y: x::) \mathrm{DH}:$ G f; and the Point f being found, the reft will be determin'd as above.

But perhaps this Rule may be thus made fomething neater: Make $x: y:: \mathrm{AB}: \mathrm{AL}$. Then $\mathrm{AL}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$, and then DT will touch the Curve. For becaufe of equal Triangles AFD and ATD , 'tis $\mathrm{AD} \times \mathrm{DF}=\mathrm{AT} \times \mathrm{DH}$, and therefore $\mathrm{AT}: \mathrm{AD}::(\mathrm{DF}$ or $\frac{\mathrm{AD}}{\mathrm{AG}} \times G f: \mathrm{DH}$ or $\left.\frac{\dot{y}}{\dot{x}} \mathrm{G} f::\right) \mathrm{AD}:\left(\frac{\dot{y}}{\dot{x}} \mathrm{AG}\right.$ or) AL .
57. Ex. 2. Let $x=y$, (which is the Equation to the Quadratrix of the Ancients,) then $x=y$. Therefore $\mathrm{AB}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$.
58. Ex. 3. Let $a x x=y^{3}$, then $2 a x x=3 y^{2}$. Therefore make $3 y^{2}: 20 x::(x: y::) \mathrm{AB}: \mathrm{AL}$. Then $\mathrm{AL}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$. And thus you may determine expeditiouny the Tangents of any other Quadratrices, howfoever compounded.

Nintb Manner.

59. Laftly, if ABF be any given Curve, which is toucl'd by the right Line $-\mathrm{B} t$; and a part BD of the right Line BC , (being an Ordinate in any given Angle to the Abfcifs AC,) intercepted between this and another Curve DE, has a Relation to the portion of the Curve $A B$, which is exprefs'd by any Equation: You may draw a Tangent DT to the other Carve, by taking (in the Tangent of this
 Curve,) BT in the fame Ratio to $B D$, as the Fluxion of the Curve $A B$ hath to the Fluxion of the right Line BD.
60. Ex. I. Calling $\mathrm{AB}=x$, and $\mathrm{BD}=y$; let it be $a x=y y$, and therefore $a x=2 y y$. Then $a: 2 y::(y: x::) \mathrm{BD}: \mathrm{BT}$.

6I. Exiz. Let $\frac{a}{b} x=y$, (the Equation to the Trochoid, if ABF be a Circle, , then $\frac{a}{b} x=j$, and $a: b:: \mathrm{BD}: \mathrm{BT}$.
62. And with the fame eafe may Tangents be drawn, when the Relation of BD to AC , or to BC , is exprefs'd by any Equation; or when the Curves are refer'd to right Lines, or to any other Curves, after any other manner whatever.
63. There are alfo many other Problems, whofe Solutions are to be derived from the fame Principles; fuch as thefe following.
I. To find a Point of a Curve, rebere the Tangent is parallel to the Abcijs, or to any otber right Line given in pofition; or is perpendicular to it, or inclined to it in any yiven Angle.
II. To fund the Point where the Tangent is moft or leaft, inclined to the Abfifs, or to any other right Line given in pofition. That is, to find the confune of contrary. Flexure. Of this I have already given' a Specimen in the Conchoid.
III. From any given Point weitbout the Perimeter of a Curve, to drawo a right Line, robich with the Perimeter may make an Angle of

Contact, or a right Angle, or any other given Angle. That is, from a given Point, to draw Tangents, or Perpendiculars, or right Lines that fall have any other Inclination to a Curve-line.
IV. From any given Point within a Parabola, to draw a right Line, wobich may make with the Perimeter the greatest or leafs Angle pofible. And jo of all Curves whatever.
V. To draw a right Line which may touch two Curves given in pofition, or the fame Curve in two Points, when that can be done.
VI. To draw any Curve with given Conditions, which may touch another Curve given in pofition, in a given. Point.
VII. To determine the Refraction of any Ray of Light, that falls upon any Curve Superficies.

The Refolution of the fe, or of any other the like Problems; will not be fo difficult, abating the tedioufnefs of Computation; as that there is any occafion to dwell upon them here: And I imagine it may be more agreeable to Geometricians barely to have mention'd them.

PROB. V.

At any given Point of a given:Curve, to find the Quantity of Curvature.
I. There are few Problems concerning Curves more elegant than this, or that give a greater Inflight into their nature. In order to its Refolution; I muff premife the fe following general Confiderations.
2. I. The fame Circle has every where the fane Curvature, and in different Circles it is reciprocally proportional to their Diameters. If the Diameter of any Circle is as little again as the Diameter of another, the Curvature of its Periphery will be as great again. If the Diameter be one-third of the other, the Curvature will be thrice as much, ETc.
3. II. If a Circle touches any Curve on its concave fade, in any given Point, and if it be of fuck magnitude, that no other tangent Circle can be interferibed in the Angles of Contact near that Point; that Circle will be of the fame Curvature as the Curve is of, in that Point of Contact. For the Circle that comes between the Curve and another Circle at the Point of Contact, "varies less from the Curve, and makes a nearer approach to' its Curvature, than that other Circle does. And therefore that Circle approaches nearcit to its

Curvature, between which and the Curve no other Circle can intervene.
4. III. Therefore the Center of Curvature to any Point of a Curve, is the Center of a Circle equally curved. And thus the Radius : or Semidinmeter of Curvature is part of the Perpendicular to the Curve, which is terminated at that Center.
$5 \cdots$ IV. And the proportion of Curvature at different Points will be known from the proportion of Curvature of aqui-curve Circles, or from the reciprocal proportion of the Radii of Curvature.
6. Therefore the Problem is reduced to this, that the Radius, or Center of Curvature may be found.
7. Imagine therefore that at three Points of the Curve d, D, and d, Perpendiculars are drawn, of which thofe that are at D and δ meet in H , and thofe that are at D and d meet in b : And the Point D being in the middle, if there is a greater Curvity at the part $D \delta$ than at $\mathrm{D} d$, then DH will be lefs than $d b$. But by how much the Perpendiculars $\delta \mathrm{H}$ and $d b$ are nearer the intermediate Perpendicular, fo much the leis will the diftance be of the Points H and b : And at laft when the Perpendiculars meet, thofe Points will coincide. Let them coincide in the Point C, then will C be the Center of Curvature, at the Point D of the Curve, on which the Perpendiculars fand ; which is manifett of itfelf.
8. But there are feveral Symptoms or Properties of this Point C, which may be of ufe to its determination.
9. I. That it is the Concourfe of Perpendicnlars that are on ench fide at an infinitely little diftance from DC.
10. II. That the Interfections of Perpendiculars, at any little finite diftarice on each fide, are feparated and divided by it ; fo that thofe which are on the more curved fide Dd fooner meet at H , and thofe, which are on the other lefs curved fide $D d$ meet more remotely at b.
II. III. If DC be conceived to move, while it infifts perpendicularly on the Curve, that point of it C , (if you except the motion of approaching to or receding from the Point of Infiftence C,) will be leait moved, but will be as it were the Center of Motion.
12. IV. If a Circle be defcribed with the Center C, and the diftance DC , no other Circle can be defcribed, that can lie between at the Contact.
13. V. Laftly, if the Center H or b of any other toucbing Circle approaches by degrees to C the Center of this, till at laft it coancides with it ; then any of the points in which that Circle Chall cut the Curve, will coincide with the point of Contact D.
14. And cach of the fe Properties may fupply the means of folving the Problem different ways: But we hall here make choice of the firft, as being the moft fimple.
15. At any Point D of the Curve let DT be a Tangent, DC a Perpendicular, and C the Center of Curvature, as before. And let $A B$ be the Abfifs, to which let $D B$ be apply'd at right Angles, and which DC meets in P. Draw $D G$ parallel to $A B$, and $C G$ perpendicular to it, in which take Cg of any given Magnitude, and draw g s perpendicular to it, which meets DC in δ. Then it will be
 of the Abfcifs, to the Fluxion of the Ordinate. Likewife imagine the Point D to move in the Curve an infinitely little diftance $\mathrm{D} d$, and
 drawing de perpendicular to DG , and $\mathrm{C} d$ perpendicular to the Curve, let $\mathrm{C} d$ meet DG in F , and δg in f. Then will De be the Momentum of the Abfcifs, de the Momentum of the Ordinate, and of the contemporaneous Momentum of the right Line g\&. Therefore DF $=\mathrm{D}_{e}+\frac{d e \times d e}{\mathrm{D}_{e}}$. Having therefore the Ratio's of thefe Moments, or, which is the fame thing, of their generating Fluxions, you will have the Ratio of CG to the given Line Cg , (which is the fame as that of $D F$ to δf_{3}) and thence the Point C will be determined.
16. Therefore let $\mathrm{AB}=x, \mathrm{BD}=y, \mathrm{C} g=\mathrm{I}$, and $g \delta=z$; then it will be $1: \approx:: \dot{x}: \dot{y}$, or $\approx=\frac{v}{\dot{x}}$. Now let the Momentum of of z be $z \times 0$, (that is, the Product of the Velocity and of an infinitely fmall Quantity 0 ,) and therefore the Moments $\mathrm{D} \ell=\dot{x} \times 0, \quad d e=j \times 0$, and thence $\mathrm{DF}=\dot{x} 0+\frac{y y}{\dot{x}}$. Therefore 'tis $\mathrm{Cg}(\mathrm{r}): \mathrm{CG}::\left(\delta f: \mathrm{DF}::\right.$) $\underset{\sim}{0}: \dot{x} 0+\frac{\ddot{m}}{\dot{x}}$. That $\mathrm{is}, \mathrm{CG}=$ $\frac{\ddot{x}+\ddot{y}}{\ddot{x} z}$.
17. And whereas we are at liberty to afcribe whatever Velocity we pleafe to the Fluxion of the Abfcifs \dot{x}, (to which, as to an equable Fluxion, the reft may be referr'd;) make $\dot{x}=\mathrm{I}$, and then $\dot{y}=z$, and $\mathrm{CG}=\frac{1+z z}{z}$. And thence $\mathrm{DG}=\frac{z+z^{3}}{z}$, and $\mathrm{DC}=\frac{\overline{1+z z} \sqrt{1+z z}}{z}$.
18. Therefore any Equation being propofed, in which the Relation of $B D$ to $A B$ is exprefs'd for defining the Curve ; firft find the Relation betwixt x and y, by Prob. 1. and at the fame time fubfitute I for \dot{x}, and z for \dot{y}. Then from the Equation that arifes, by the fame Prob. I. find the Relation between \dot{x}, \dot{y}, and \dot{z}, and at the fame time fubftitute I_{1} for \dot{x}, and z for \dot{y}, as before. And thus by the former operation you will obtain the Value of z, and by the latter you will have the Value of \dot{z}; which being obtain'd, produce DB to H , towards the concave part of the Curve, that it may be $\mathrm{DH}=\frac{1+z z}{\dot{z}}$, and draw HC parallel to AB , and meeting the Perpendicular DC in C; then will C be the Center of Curvature at the Point D of the Curve. Or fince it is $\mathrm{I}+z z=$ $\frac{\mathrm{PT}}{\mathrm{BF}}$, make $\mathrm{DH}=\frac{\mathrm{PT}}{\dot{z} \times \mathrm{BT}}$, or $\mathrm{DC}=\frac{\overline{\mathrm{DP}} \mathrm{B}_{3}}{z \times \overline{\mathrm{DB}} \mathrm{B}_{3}}$.
19. Ex. I. Thus the Equation $a x+b x^{2}-y^{2}=0$ being propofed; (which is an Equation to the Hyperbola whofe Latus rectum is a, and Tranfverfum $\frac{a}{b}$;) there will arife (by Prob. I.) $a+2 b x-$ $2 z y=0$, (writing I for \dot{x}, and \approx for \dot{y} in the refulting Equation, which otherwife would have been $a \dot{x}+2 b \dot{x} x-2 y y=0$;) and hence again there arifes $2 b-2 z z-2 z y=0$, (1 and z being again wrote for \dot{x} and \dot{y}.) By the firf we have $z=\frac{a+z b x}{2 y}$, and by the latter $\dot{\sim}=\frac{b-z z}{y}$. Therefore any Point D of the Curve being given, and confequently x and y, from thence \approx and \approx will be given, which being known, make $\frac{1+z z}{\dot{z}}=\mathrm{GC}$ or DH , and draw HC.
20. As if definitely you make $a=3$, and $b=1$, fo that $3 x+$ $x x=y y$ may be the condition of the Hyperbola. And if you afiume $x=1$, then $y=2, z=\frac{5}{4}, z=-\frac{9}{3}$, and $\mathrm{DH}=-9 \frac{3}{9}$. II being found, raife the Perpendicular HC meeting the Perpendi-
cular
cular DC before drawn ; or, which is the fame thing, make HD : HC :: ($1: z::$) $1: \frac{5}{4}$. Then draw DC the Radius of Curvature.
21. When you think the Computation will not be too perplex, you may fubftitute the indefinite Values of \dot{z} and z into $\frac{1+z z}{\dot{z}}$, the Value of CG. Thus in the prefent Example, by a due Reduction you will have $\mathrm{DH}=y+\frac{41^{5}+4 b^{3} 3}{a a}$. Yet the Value of DH by Calculation comes out negative, as may be feen in the numeral Example. But this only fhews, that DH muft be taken towards B; for if it had come out affirmative, it ought to have been drawn the contrary way.
22. Corol. Hence let the Sign prefixt to the Symbol $+b$ be changed, that it may be $a x-b x x-y y=0$, (an Equation to the Ellipfis,) then $\mathrm{DH}=y+\frac{4 y^{3}-4 b y^{3}}{a a}$.
23. But fuppofing $b=0$, that the Equation may become $a x-$ $y y=0$, (an Equation to the Parabola,) then $\mathrm{DH}=y+\frac{43^{3}}{a a}$; and thence $\mathrm{DG}=\frac{1}{2} a+2 x$.
24. From thefe reveral Expreffions it may eafily be concluded, that the Radius of Curvature of any Conick Section is always $\overline{\frac{4 \mathrm{DP1}}{a a}}$.
25. Ex. 2. If $x^{3}=a y^{2}-x y^{2}$ be propofed, (which is the Equation to the Ciffoid of Diocles,) by Prob. I. it will be firf $3 x^{x^{2}}=2 a z y$ $-2 x z y-y^{2}$; and then $6 x=2 a z y+2 a z z-2 z y-2 x z y-2 x z z$ $-2 z y$: So that $z=\frac{3 x x+y y}{2 a y-2 x y}$, and $\dot{z}=\frac{3 x-a z z+2 z y+x z z}{a y-x y}$. Therefore any Point of the Ciffoid being given, and thence x and y, there will be given alfo z and \dot{z}; which being known, make $\frac{1+\underset{z}{z}}{z}$ $=\mathrm{CG}$.
26. Ex. 3. If $\overline{b+y} \sqrt{c c-y y}=x y$ were given, (which is the Equation to the Conchoid, in pag. 48 ;) make $\sqrt{c c-y y}=v$, and there will arife $b v+y v=x y$. Now the firft of thefe, (cc-y) $=v v$,) will give (by Prob. $I_{.}$) - $2 y \approx=2 v v$, (writing z for y;) and the latter will give $b \dot{y}+y+z v=y+x z$. And from thefe Equations rightly difpofed \dot{v} and \approx will be determined. But that \approx may alfo be found ; out of the laft Equation exterminate the Fluxion \dot{v}, by fubfituting - $\frac{: \tilde{v}}{v}$, and there will arife $-\frac{b_{: ~}}{v}-\frac{v z}{v}+\approx j$ $=y$
$=y+x z$, an Equation that comprehends the flowing Qanatities, without any of their Fluxions, as the Refolution of the firlt Problem requires. Hence therefore by Prob. I. we fhall have $\frac{l_{z} z}{v}-\frac{b_{y z}}{v}+\frac{b_{y z i}}{v v}-\frac{2 y z z}{v}-\frac{d \dot{\tilde{z}}}{v}+\frac{v z \dot{v} v}{v v}+\dot{z} v+z \dot{v}=2 z+x \dot{z}$. This Equation being reduced, and difpofed in order, will give z. But when \approx and \approx are known, make $\frac{1+z z}{\dot{\approx}}=$ CG.
27. If we had divided the laft Equation but one by \approx, then by Prob. 1. we fhould have had $-\frac{b z}{v}+\frac{b y i}{v i}-\frac{2 y z}{v}+\frac{y v i}{v i}+\dot{v}=$ 2 - $\frac{z \dot{z}}{z z}$; which would have been a more fimple Equation than the former, for determining \dot{z}.
28. I have given this Example, that it may appear, how the operation is to be perform'd in furd Equations: But the Curvature of the Conchoid may be thus found a fhorter way. The parts of the Equation $\overline{b+y} \sqrt{\bar{c}-y^{\prime}}=x y$ being fquared; and divided by y, there arifes $\frac{l a^{2}}{y^{2}}+\frac{2 h^{2}}{y}+t^{2}-2 b y-y^{2}=x^{2}$, and thence by Prob. I. $-\frac{2 l a^{2} z}{j^{3}}-\frac{2 b c^{2} z}{\rho^{2}}-2 b \approx-2 y z=2 x$, or $-\frac{b^{2} c^{2}}{j^{3}}-\frac{b c^{2}}{j^{2}}-b-y=\frac{x}{z}$ And hence again by Prob. I. $\frac{3 b^{2} c^{2} z}{j^{4}}+\frac{2 c^{2} z}{j^{3}}-z=\frac{1}{z}-\frac{x z}{z z}$: By the firft refult z is determined, and \dot{z} by the latter.
29. Ex. 4. Let ADF be a Trochoid [or Cycloid] belonging to the Circle ALE, whofe Diameter is AE; and making the Ordinate BD to cut the Circle in L , call $\mathrm{AE}=a$, $\mathrm{AB}=x, \mathrm{BD}$ $=y, \mathrm{BL}=v$, and the Arch $\mathrm{AL}=t$, and the Fluxion of the fame Arch $=t$. And firft (drawing the Semidiameter PL, the Fluxion of the

Bare or Abfciis AB will be to the Fluxion of the Arch AL, as BL
to PL; that is, \dot{x} or $\mathrm{I}: \ddot{t}:: v: \frac{1}{2} a$. And therefore $\frac{a}{2 v}=\dot{t}$. Then from the nature of the Circle $a x-x x=v v$, and therefore by Prob. I. $a-2 x=2 \dot{v} v$, or $\frac{a-2 x}{2 v}=\dot{v}$.
30. Moreover from the nature of the Trochoid, 'tis LD $=$ Arch AL, and therefore $v+t=y$. And thence (by Prob. I) $v+t=z$. Laftly, inftead of the Fluxions v and t let their Values be fubitituted, and there will arife $\frac{a-x}{v}=z$. Whence (by Prob.r.) is derived $-\frac{a v}{v i v}+\frac{x v}{v v}-\frac{1}{v}=\dot{z}$. And there being found, make $\frac{1+\tilde{z}}{z}$ $=-\mathrm{DH}$, and raife the perpendicular HC.

3I. Cor. I. Now it follows from hence, that $\mathrm{DH}=2 \mathrm{BL}$, and $\mathrm{CH}=2 \mathrm{BE}$, or that EF bifects the radius of Curvature CD in N . And this will appear by fubftituting the values of \approx and \approx now found, in the Equation $\frac{+z z}{\dot{z}}=\mathrm{DH}$, and by a proper reduction of the refult.
32. Cor. 2. Hence the Curve FCK, defcribed indefinitely by the Center of Curvature of ADF, is another Trochoid equal to this, whofe Vertices at I and F adjoin to the Cufpids of this. For let the Circle $F \lambda$, equal and alike pofited to ALE, be defcribed, and $\operatorname{det} C \beta$ be drawn parallel to EF, meeting the Circle in λ : Then will Arch $\mathrm{F} \lambda=($ Arch $\mathrm{EL}=\mathrm{NF}=) \mathrm{C} \lambda$.
33. Cor. 3. The right Line CD, which is at right Angles to the Trochoid IAF, will touch the Trochoid IKF in the point C.
34. Cor. 4. Hence (in the inverted Trochoids,) if at the Cufpid K of the upper Trochoid, a Weight be hung by a Thread at the diftance KA or ${ }_{2} E A$, and while the Weight vibrates, the Thread be fuppos'd to apply itfelf to the parts of the Trochoid KF and KI, which refift it on each fide, that it may not be extended into a right Line, but compel it (as it departs from the Perpendicular) to be by degrees inflected above, into the Figure of the Trochoid, while the lower part CD, from the loweft Point of Contact, ftill remains a right Line: The Weight will move in the Perimeter of the lower Trochoid, becaufe the Thread CD will always be perpendicular to it.
35. COR. 5. Therefore the whole Length of the Thread KA is equal to the Perimeter of the Trochoid KCF , and its part CD is equal to the part of the Perimeter CF.
36. Cor. 6. Since the Thread by its of cillating Motion revolves. about the moveable Point C, as a Center; the Superficies through which the whole Line CD continually paffes, will be to the Superficies through which the part CN above the right Line IF paffes at the fame time, as $\overline{\mathrm{CD}}^{2}$ to $\overline{\mathrm{CN}}^{2}$, that is, as 4 to r . Therefore the Area CFN is a fourth part of the Area CFD; and the Area KCNE is a fourth part of the Area AKCD.
37. Cor. 7. Alfo fince the fubtenfe EL is equal and parallel to CN , and is converted about the immoveable Center E , juft as CN moves about the moveable Center C; the Superficies will be equal through which they pafs in the fame time, that is, the Area CFN, and the Segment of the Circle EL. And thence the Area NFD will be the triple of that Segment, and the whole area EADF will be the triple of the Semicircle.
38. Cor. 8. When the Weight D arrives at the point F, the whole Thread will be wound about the Perimeter of the Trochoid KCF , and the Radius of Curvature will there be nothing. Wherefore the Trochoid IAF is more curved, at its Cufpid F, than any Circle ; and makes an Angle of Contact, with the Tangent β F produced, infinitely greater than a Circle can make with a right Line.
39. But there are Angles of Contact that are infinitely greater than Trochoidal ones, and others infinitely greater than thefe, and fo on in infinitum ; and yet the greateft of them all are infinitely lefs than right-lined Angles. Thus $x x=a y, x^{3}=b y^{2}, x^{4}=c y^{3}$, $x^{5}=d y^{4}, \& c$. denote a Series of Curves, of which every fucceeding one makes an Angle of Contact with its Abrcifs, which is infinitely greater than the preceding can make with the fame Abfcifs. And the Argle of Contact which the firft $x x=a y$ makes, is of the fame kind with Circular ones; and that which the fecond $x^{3}=b y^{2}$ makes, is of the fame kind with Trochoidals. And tho' the Angles of the fucceeding Curves do always infinitely exceed the Angles of the preceding, yet they can never arrive at the magnitude of a right-lined Angle.
40. After the fame manner $x=y, x x=a y, x^{3}=b^{2} y, x^{4}=c^{3} y$, \&c. denote a Series of Lines, of which the Angles of the fubfequents, made with their Abfcifs's at the Vertices, are always infinitely lefs than the Angles of the preceding. Moreover, between the Angles of Contact of any two of thefe kinds, other Angles of Contact may be found ad infinitum, that thall infinitely exceed each other.

4 I . Now it appears, that Angles of Contact of one kind are infinitely greater than thofe of another kind ; fince a Curve of one kind, however great it may be, cannot, at the Point of Contact,
lie between the Tangent and a Curve of another kind, however fmall that Curve may be. Or an Angle of Contact of one kind cannot neceffarily contain an Angle of Contact of another kind, as the whole contains a part. Thus the Angle of Contact of the Curve $x^{4}=c y^{3}$, or the Angle which it makes with its Abrcifs, neceffarily includes the Angle of Contact of the Curve $x^{3}=b y^{2}$, and can never be contain'd by it. For Angles that can mutually exceed each other are of the fame kind, as it happens with the aforefaid Angles of the Trochoid, and of this Curve $x^{3}=b y^{2}$.
42. And hence it appears, that Curves, in fome Points, may be infinitely more ftraight, or infinitely more curved, than any Circle, and yet not, on that account, lofe the form of Curve-lines. But all this by the way only.
43. Ex. 5. Let ED be the Quadratrix to the Circle, defcribed from Center A ; and letting fall DB perpendicular to AE , make $\mathrm{AB}=x$, $\mathrm{BD}=y$, and $\mathrm{AE}=\mathrm{r}$. Then 'twill be $y x-y y^{2}-y x^{2}=x y$, as before. Then writing I for x, and z for y, the Equation becomes $z x-z y^{2}-z x^{2}$. $=y$; and thence, by Prob. 1. $z x$
 $-z y^{2}-z x^{2}+z x-2 z x x-2 z y y=y$. Then reducing, and again writing I for \dot{x}, and z for \dot{y}, there arifes $\dot{z}=\frac{2 z^{2} y+2 z x}{x-x x-y y}$. But z and \dot{z} being found, make $\frac{1+z z}{\dot{z}}=\mathrm{DH}$, and draw HC as above.
44. If you defire a Conftruction of the Problem, you will find it very fhort. Thus draw DP perpendicular to DT, meeting AT in P, and make $2 \mathrm{AP}: \mathrm{AE}:: \mathrm{PT}: \mathrm{CH}$. For $z=\left(\frac{y}{x-x x-y y}=\right) \frac{B D}{-B T}$, and $z y=\frac{\mathrm{BD}_{q}}{-\mathrm{BT}}=-\mathrm{BP}$; and $z y+x=-\mathrm{AP}$, and $\frac{2 z}{x-x x-j y}$ into $z y+x=\frac{2 \mathrm{BD}}{\mathrm{AE} \times \mathrm{BT}_{q}}$ into- $\mathrm{AP}=z$. Moreover it is $\mathrm{I}+z z=$ $\frac{\mathrm{PT}}{\mathrm{BT}}$, (becaufe $=\mathrm{I}+\frac{\mathrm{BD} q}{\mathrm{BT} q}=\frac{\mathrm{DT}}{\mathrm{B} \Gamma_{q}}$, and therefore $\frac{1+z z}{\dot{z}}=\frac{\mathrm{PT} \times A \mathrm{AEPT}}{-2 B D \times A \mathrm{P}}$ $=\mathrm{DH}$. Laftly, it is $\mathrm{BT}: \mathrm{BD}:: \mathrm{DH}: \mathrm{CH}=\frac{\mathrm{PT} \times A E}{-2 A P}$. Here the negative Value only fhews, that CH muft be taken the fame way as AB from DH .
45. In the fame manner the Curvature of Spirals, or of any other Curves whatever, may be determined by a very fhort Calculation.
46. Furthermore, to determine the Curvature without any previous reduction, when the Curves are refer'd to right Lines in any other manner, this Method might have been apply'd, as has been done already for drawing Tangents. But as all Geometrical Curves, as alfo Mechanical, (efpecially when the defining conditions are reduced to infinite Equations, as I fhall thew hereafter,) may be refer'd to rectangular Ordinates, I think I have done enough in this matter. He that defires more, may eafily fupply it by his own induftry; efpecially if for a farther illuftration I fhall add the Method for Spirals.
47. Let BK be a Circle, A its Center, and B a given Point in its Circumference. Let ADd be a Spiral, DC its Perpendicular, and C the Center of Curvature at the Point D. Then drawing the right Line ADK, and CG parallel and equal to AK, as alfo the Perpendicular GF meeting $C D$ in $\mathrm{F}:$ Make AB or $\mathrm{AK}=$ $\mathrm{I}=\mathrm{CG}, \mathrm{BK}=x, \mathrm{AD}=y$,
 and $\mathrm{GF}=$ z. Then conceive the Point D to move in the Spiral for an infinitely little Sprce $D d$, and then through d draw the Semidiameter $A k$, and $C g$ parallel and equal to it, draw $g f$ perpendicular to $g \mathrm{C}$, fo that $\mathrm{C} d$ cuts $g f$ in f, and GF in P ; produce GF to φ, fo that $\mathrm{G} \varphi=g f$, and draw de perpendicular to $A K$, and produce it till it meets CD at I. Then the contemporaneous Moments of BK, AD, and $\mathrm{G} \varphi$, will be $\mathrm{K} k$, De and $\mathrm{F} \varphi$, which therefore may be call'd $\dot{x} 0, y o$, and $z 0$.
48. Now it is $\mathrm{AK}: \mathrm{Ae}(\mathrm{AD}):: k \mathrm{~K}: d e=j 0$, where I affume $x=\mathrm{I}$, as above. Alfo $\mathrm{CG}: \mathrm{GF}:: d e: e \mathrm{D}=0 ; z$, and therefore $y z=\dot{y}$. Befides $\mathrm{CG}: \mathrm{CF}:: d e: d \mathrm{D}=0 y \times \mathrm{CF}:: d \mathrm{D}:$ $d \mathrm{I}=$ oy $\times \mathrm{CF} q$. Moreover, becaufe $\angle \mathrm{PC} \varphi(=\angle \mathrm{GCg})=\angle \mathrm{DA} d$, and $\angle C P_{\varphi}(=\angle C d I=\angle e d \mathrm{D}+$ Rect. $)=\angle \mathrm{AD} d$, the Triangles $\mathrm{CP} \varphi$ and $\mathrm{AD} d$ are fimilar, and thence $\mathrm{AD}: \mathrm{D} d:: \mathrm{CP}(\mathrm{CF})$: $\mathrm{P} \phi=0 \times \mathrm{CF} q$. From whence take $\mathrm{F} \varphi$, and there will remain PF $=0 \times \mathrm{CF} q-0 \times \dot{z}$. Laftly, letting fall CH perpendicular to AD , 'tis $\mathrm{PF}: d \mathrm{I}:: \mathrm{CG}: c \mathrm{H}$ or $\mathrm{DH}=\frac{v \times \mathrm{CF}_{q}}{\mathrm{CF}_{q}-z}$. Or fubftituting $\mathrm{I}+z z$ for $\mathrm{CF} q$, 'twill be $\mathrm{DH}=\frac{y+y z z}{1+z z-z}$. Here it may be obferved, that
that in this kind of Computations, I take thofe Quantities (AD and $\mathrm{A} e$) for equal, the Ratio of which differs but infinitely little from the Ratio of Equality.
49. Now from hence arifes the following Rule. The Relation of x and y being exhibited by any Equation, find the Relation of the Fluxions \dot{x} and \dot{y}, (by Prob. i.) and fubftitute I for \dot{x}, and $y z$ for \dot{y}. Then from the refulting Equation find again, (by Prob. I.) the Relation between \dot{x}, \dot{y}, and \dot{z}, and again fubstitute 1 for \dot{x}. The firft refult by due reduction will give y and z, and the latter will give \dot{z}; which being known, make $\frac{y+y z z}{1+z z-\dot{z}}=\mathrm{DH}$, and raife the Perpendicular HC, meeting the Perpendicular to the Spiral DC before drawn in C , and C will be the Center of Curvature. Or which comes to the fame thing, take $\mathrm{CH}: \mathrm{HD}:: \approx: \mathrm{I}$, and draw CD.
50. Ex. I. If the Equation be $a x=y$, (which will belong to the Spiral of Arcbimedes, then (by Prob. 1.) $a \dot{x}=\dot{y}$, or (writing I for \dot{x}, and $y z$ for y,) $a=y z$. And hence again (by Prob 1.) $0=$ $y z+y z$. Wherefore any Point D of the Spiral being given, and thence the length AD or y, there will be given $z=\frac{a}{y}$, and $z=$ (- $-\frac{j z}{y}$ or) - $\frac{a z}{y}$. Which being known, make $x+z z-\dot{z}$: $1+z z::$ DA $(y):$ DH. And $1: z:: \mathrm{DH}: \mathrm{CH}$.

And hence you will eafily deduce the following Conftruction. Produce $A B$ to Q, fo that $A B$: Arch $B K::$ Arch $B K: B Q$, and make $\mathrm{AB}+\mathrm{AQ}: \mathrm{AQ}:: \mathrm{DA}: \mathrm{DH}:: a: \mathrm{HC}$.
51. Ex. 2. If $a x^{2}=y^{3}$ be the Equation that determines the Relation between BK and AD ; (by Prob; r.) you will have $2 a x x=$ $3 y y^{2}$, or $2 a x=3 z y^{3}$. Thence again $2 a x=3 z y^{5}+9 z y y^{2}$. 'Tis therefore $z=\frac{2 a r}{3)^{3}}$, and $\dot{z}=\frac{2 a-9 z z y^{3}}{33^{3}}$. Thefe being known, make $1+z z-z: 1+z z:: \mathrm{DA}: \mathrm{DH}$. Or, the work being reduced to a better form, make $9 x x+10: 9 x x+4:: \mathrm{DA}: \mathrm{DH}$.
52. Ex. 3. After the lame manner, if $a x^{2}-b x y=y^{3}$ determines the Relation of BK to AD ; there will arife $\frac{2 a x-6 y}{6 x y+3)^{3}}=\approx$, and $\frac{2 a-a b z y-b z^{2} x_{1}-9 z^{2} j^{3}}{b x,+3)^{3}}=\approx$. From which DH , and thence the. Point C, is determined as before.
53. And thus you will eafily determine the Curvaturei of any other Spirals; or invent Rules for any other kinds of Curves, in imitation of thefe already given.
54. And now I have finifif'd the Problem; but having made ufe of a Method which is pretty different from the common ways of operation, and as the Problem ittelf is of the number of thofe which are not very frequent among Geometricians: For the illuftration and confirmation of the Solution here given, I fhall not think much to give a hint of another, which is more obvious, and has a nearer relation to the ufual Methods of drawing Tangents. Thus if from any Center, and with any Radius, a Circle be conceived to be defcribed, which may cut any Curve in feveral Points; if that Circle be fuppos'd to be contracted, or enlarged, till two of the Points of interfection coincide, it will there touch the Curve. And befides, if its Center be fuppos'd to approach towards, or recede from, the Point of Contact, till the third Point of interfection fhall meet with the former in the Point of Contact; then will that Circle be æquicurved with the Curve in that Point of Contact: In like manner as I infinuated before, in the laft of the five Properties of the Center of Curvature, by the help of each of which I affirm'd the Problem might be folved in a different manner.
55. Therefore with Center C, and Radius CD, let a Circle be deffribed, that cuts the Curve in the Points d, D, and δ; and letting fall the Perpendiculars $\mathrm{DB}, d b, \delta \beta$, and CF , to the $A b$ fcifs $A B$; call $A B$ $=x, \mathrm{BD}=y, \mathrm{AF}=v$, $\mathrm{FC}=t$, and $\mathrm{DC}=s$. Then $\mathrm{BF}=v-x$, and $\mathrm{DB}+\mathrm{FC}$ $=y+t$. The fum of the Squares of thefe is equal to the Square of DC ; that is, $v^{2}-$ $2 v x+x^{2}+y^{2}+2 y t+t^{2}$ =ss. If you would abbrevi-
 ate this, make $v^{2}+t^{2}-s^{2}=q^{2}$, (any Symbol at pleafure,) and it becomes $x^{2}-2 v x+y^{2}+2 t y+q^{2}=0$. After you have found t, v, and q^{2}, you will have $s=\sqrt{v^{2}+t^{2}-q^{2}}$.
56. Now let any Equation be propofed for defining the Curve, the quantity of whofe Curvature is to be found. By the help of this Equation you may exterminate either of the Quantities x or y,
and there will arife an Equation, the Roots of which, $(d 6, \mathrm{DE}, \delta \beta$, $\& c$. if you exterminate x; or $\mathrm{A} b, \mathrm{AB}, \mathrm{A} \beta$, \&c. if you exterminate y,) are at the Points of interfection $d, \mathrm{D}, \delta, \& c$. Wherefore fince three of them become equal, the Circle both touches the Curve, and will alfo be of the fame degree of Curvature as the Curve, in the point of Contact. But they will become equal by comparing the Equation with another fictitious Equation of the fame number of Dimenfions, which has three equal Roots; as Des Cartes has fhew'd. Or more expeditioufly by multiplying its Terms twice by an Arithmetical Progrefiion.
57. Example. Let the Equation be $a x=y y$, (which is an Equation to the Parabola,) and exterminating x, (that is, fubftituting its Value $\frac{\mu y}{a}$ in the foregoing Equation,) ${ }^{\text {a }}$ there will arife Three of whofe Roots y are to be made equal. And for this purpofe I multiply the Termstwice by an Arithmetical Progrefiion, as you fee done here; and there arifes
 Or $v=\frac{31^{2}}{a}+\frac{1}{2} a$. Whence it is eafily infer'd, that $B F=2 x+$ $\frac{1}{2} a$, as before.
58. Wherefore any Point D of the Parabola being given, draw the Perpendicular DP to the Curve, and in the Axis take $\mathrm{PF}=2 \mathrm{AB}$, and erect FC Perpendicular to FA, meeting DP in C ; then will C be the Center of Curvity defired.
59. The fame may be perform'd in the Ellipfis and Hyperbola, but the Calculation will be troublefome enough, and in other Curves generally very tedious.

Of Quefions that bave. Some Affinity to the preceding Problen.

60. From the Refolution of the preceding Problem fome others may be perform'd; fuch are,

I. To find the Point where the Curve bas a given degree of Curvature.

61. Thus in the Parabola, $a x=y y$, if the Point be required whofe Radius of Curvature is of a given length f : From the Center of Curvature, found as before, you will determine the Radius.
to be $\frac{a+4 x}{2 a} \sqrt{a a+4 a x}$, which muft be made equal to f. Then by reduction there arifes $x=-\frac{1}{4} a+\frac{1}{1} \frac{1}{\top} a f f$.
II. To find the Point of Rectitude.
62. I call that the Point of Rectitude, in which the Radius of Flexure becomes infinite, or its Center at an infinite diftance: Such it is at the Vertex of the Parabola $a^{3} x=y^{4}$. And this fame Point is commonly the Limit of contrary Flexure, whofe Determination I have exhibited before. But another Determination, and that not inelegant, may be derived from this Problem. Which is, the longer the Radius of Flexure is, fo much the lefs the Angle DCd (Fig.pag.6i.) becomes, and alfo the Moment of; fo that the Fluxion of the Quantity z is diminifh'd along with it, and by the Infinitude of that Radius, altogether vanifhes. Therefore find the Fluxion \dot{z}, and fuppofe it to become nothing.
63. As if we would determine the Limit of contrary Flexure in the Parabola of the fecond kind, by the help of which Cartefus conftructed Equations of fix Dimenfions; the Equation to that Curve is $x^{3}-b x^{2}-c d x+b c d+d x y=0$. And hence (by Prob. I.) arifes $3^{\dot{x} x^{2}}-2 b \dot{x} x-c d x+d x y+d x y=0$. Now writing I for \dot{x}, and z for \dot{y}, it becomes $3^{x^{2}-2 b x-c d+d y+d x z=0 ; ~ w h e n c e ~}$ again (by Prob. r.) $6 \dot{x} x-2 b \dot{x}+d \dot{y}+d x z+d x z=0$. Here again writing 1 for \dot{x}, z for \dot{y}, and \circ for z, it becomes $6 x-2 b+2 d z$ $=0$. And exterminating z, by putting $b-3^{x}$ for $d z$ in the Equation $3 x x-2 b x-c d+d y+d x z=0$, there will arife $-b x$ $-c d+d y=0$, or $y=c+\frac{b x}{d}$; this being fubftituted in the room of y in the Equation of the Curve, we fhall have $x^{3}+b c d=0$; which will determine the Confine of contrary Flexure.
64. By a like Method you may determine the Points of Rectitude, which do not come between parts of contrary Flexure. As if the Equation $x^{4}-4 a x^{3}+6 a^{2} x^{2}-b^{3} y=0$ exprefs'd the nature of a Curve; you have firft, (by Prob.1.) $4 x^{3}-12 a x^{2}+12 a^{2} x-b^{3} z=0$, and hence again $12 x^{2}-24 a x+12 a^{2}-b^{3} z$ $=0$. Here fuppofe $\dot{z}=0$, and by Reduction there will arife $x=a$. Wherefore take
 $\mathrm{AB}=a$, and erect the perpendicular BD ; this will meet the Curve in the Point of Rectitude D , as was required.
III. To find the Point of infinite Flexure.
65. Find the Radius of Curvature, and fuppofe it to be nothing. Thus to the Parabola of the fecond kind, whofe Equation is $x^{3}=$ $a y^{2}$, that Radius will be $C D=\frac{4 a+9 x}{6 a} \sqrt{4 a x+9 x x}$; which becomes nothing when $x=0$.
IV. To determine the Point of the greateft or leaft Flexure.
66. At thefe Points the Radius of Curvature becomes either the greateft or leaft. Wherefore the Center of Curvature, at that moment of Time, neither moves towards the point of Contact, nor the contrary way, but is intirely at reft. Therefore let the Fluxion of the Radius CD be found; or more expeditioufly, let the Fluxion of either of the Lines BH or AK be found, and let it be made equal to nothing.
67. As if the Queftion were propofed concerning the Parabola of the fecond kind $x^{3}=n^{2} y$; firft to determine the Center of Curvature you will find $\mathrm{DH}=\frac{a a+9 x y}{6 x}$,
 and therefore $\mathrm{BH}=\frac{a a+15 x y}{6 x}$; make $\mathrm{BH}=v$, then $\frac{a a}{6 x}+\frac{5}{2} y=v$. Hence (by Prob.1.) - $\frac{a^{2} \dot{x}}{6 x x}+\frac{s}{2} \dot{y}=\dot{v}$. But now fuppofe \dot{v}, or the Fluxion of BH, to be nothing; and befides, fince by Hypothefis $x^{2}=a^{2} y$, and thence (by Prob. I.) $3 \dot{x} x^{2}=a^{2} y$, putting $\dot{x}=1$, fubfitute $\frac{3 x x}{a a}$ for j, and there will arife $45 x^{4}=a^{4}$. Take therefore $\mathrm{AB}=a \stackrel{4}{\frac{1}{45}}=a \times\left.\overline{45}\right|^{-\frac{1}{4}}$, and raifng the perpendicular BD , it will ${ }^{-}$ meet the Curve in the Point of the greateft Curvature. Or, which is the fame thing, make $A B: B D:: 3 \sqrt{ } 5: 1$.
68. After the fame manner the Hyperbola of the fecond kind reprefented by the Equation $x y^{2}=0^{3}$, will be moft inflected in the points D and d, which you may determine by taking in the Abfcifs $A C=I$, and erecting the Perpendicular $\mathrm{QP}=\sqrt{5}$, and $\propto p$ equal to it on the other fide. Then drawing $A P$ and $A p$, they will meet the Curve in the points D and d required.

V. To determine the Locus of the Center of Curvature, or to defribe the Curve, in which that Center is always found.
69. We have already fhewn, that the Center of Curvature of the Trochoid is always found in another Trochoid. And thus the Center of Curvature of the Parabola is found in another Parabola of the fecond kind, reprefented by the Equation $a x x=y^{3}$, as will eafily appear from Calculation.
VI. Light falling upon any Curve, to find its Focus, or the Concourge of the Rays that are refracted at any of its Points.
70. Find the Curvature at that Point of the Curve, and defcribe a Circle from the Center, and with the Radius of Curvature. Then find the Concourfe of the Rays, when they are refracted by a Circle about that Point: For the fame is the Concourfe of the refracted Rays in the propofed Curve.
71. To thefe may be added a particular Invention of the Curvature at the Vertices of Curves, where they cut their Abfiffes at right Angles. For the Point in which the Perpendicular to the Curve, meeting with the Abfcifs, cuts it ultimately, is the Center of its Curvature. So that having the relation between the Abfifs x, and the rectangular Ordinate y, and thence (by Prob. I.) the relation between the Fluxions \dot{x} and \dot{y}; the Value $j y$, if you fubftitute I for \dot{x} into it, and make $y=0$, will be the Radius of Curvature.
72. Thus in the Ellipfis $a x-\frac{a}{b} x x=y y$, it is $\frac{a \dot{x}}{2}-\frac{a \dot{x} x}{b}=\dot{y}$; which Value of y, if we fuppofe $y=0$, and confequently $x=b$, writing I for x, becomes $\frac{1}{2} a$ for the Radius of Curvature. And fo at the Vertices of the Hyperbola and Parabola, the Radius of Curo wature will be always half of the Latus rectum.
73. And in like manner for the Conchoid, defined by the Equation $\frac{b s, z}{x x}+\frac{2 b c c}{x}+c b-2 b x-x x=y y$, the Value of $y y$, (found by

Prob. 1.) will be $-\frac{b^{2} c^{2}}{x^{3}}-\frac{b c^{2}}{x^{2}}-b-x$. Now fuppofing $y=0$, and thence $x=c$ or $-c$, we fhall have $-\frac{b b}{c}-2 b-c$, or $\frac{b b}{c}-$ $2 b+c$, for the Radius of Curvature. Therefore make AE:EG:: EG : EC, and $A e: e \mathrm{G}:: e \mathrm{G}: e c$, and you will have the Centers of Curvature C and c, at the Vertices E and e of the Conjugate Conchoids.
P R O B. VI.

To determine the Quality of the Curvature, at a given Point of any Curve.
I. By the Quality of Curvature I mean its Form, as it is more or lefs inequable, or as it is varied more or lefs, in its progrefs thro' different parts of the Curve. So if it were demanded, what is the Quality of the Curvature of the Circle? it might be anfwer'd, that it is uniform, or invariable. And thus if it were demanded, what is the Quality of the Curvature of the Spiral, which is defcribed by the motion of the point D , proceeding from A in AD with an accelerated velocity, while the right Line AK moves with an uniform rotation about the Center A; the acceleration of

$$
\mathrm{L}_{2}
$$

which
which Velocity is fuch, that the right Line AD has the fame ratio to the Arch BK, defrribed from a given point B, as a Number has to its Logarithm: I fay, if it be afk'd, What is the Quality of the Curvature of this Spiral? It may be anfwer'd, that it is uniformly varied, or that it is equably inequable. And thus other Curves, in their feveral Points, may be denominated inequably inequable, according to the variation of their Curvature.
2. Therefore the Inequability or Variation of Curvature is required at any Point of a Curve. Concerning which it may be obferved,
3. I. That at Points placed alike in like Curves, there is a like Inequability or Variation of Curvature.
4. II. And that the Moments of the Radii of Curvature, at thofe Points, are proportional to the contemporaneous Moments of the Curves, and the Fluxions to the Fluxions.
5. III. And therefore, that where thofe Fluxions are not proportional, the -Inequability of the Curvature will be unlike. For there will be a greater Inequability, where the Ratio of the Fluxion of the Radius of Curvature to the Fluxion of the Curve is greater. And therefore that ratio of the Fluxions may not improperly be call'd the Index of the Inequability or of the Variation of Curvature.
6. At the points D and d, infinitely near to each other, in the Curve ADd , let there be drawn the Radii of Curvature DC and $d c$; and $\mathrm{D} d$ being the Moment of the Curve, Cc will be the contemporaneous Moment of the Radius of Curvature, and $\frac{\mathrm{C}_{c}}{\overline{\mathrm{D} d}}$ will be the Index of the Inequability of Curvature. For the Inequability may be call'd fuch and fo great, as the quantity of that ratio $\frac{\mathrm{C}_{\mathrm{c}}}{\mathrm{Dd}}$ fhews it to be: Or the Curvature may be faid to be fo much the more unlike to the uniform Curvature of a Circle.

7. Now letting fall the perpendicular Ordinates $D B$ and $d b$, to any line AB meeting DC in P ; make $\mathrm{AB}=x, \mathrm{BD}=y$, $\mathrm{DP}=t, \mathrm{DC}=v$, and thence $\mathrm{B} b=x o$, it will be $\mathrm{C} c=v o$; and $\mathrm{BD}: \mathrm{DP}:: \mathrm{B} b: \mathrm{D} d=\frac{\dot{x} \circ \mathrm{t}}{y}$, and $\frac{\mathrm{C}}{\mathrm{D} d}=\frac{\dot{y} y}{\dot{x_{d}}}=\frac{\dot{z} y}{t}$, making $\dot{x}=\mathrm{I}$. Wherefore

Wherefore the relation between x and y being exhibited by any Equation, and thence, (according to Prob. 4. and 5.) the Perpendicular DP or t, being found, and the Radius of Curvature v, and the Fluxion \dot{v} of that Radius, (by Prob. I.) the Index $\frac{\tau v}{t}$ of the Inequability of Curvature will be given alfo.
8. Ex. r. Let the Equation to the Parabola $2 a x=y y$ be given ; then (by Prob. 4.) $\mathrm{BP}=a$, and therefore $\mathrm{DP}=\sqrt{a a+y y}=t$. Alfo (by Prob. 5.) $\mathrm{BF}=a+2 x$, and $\mathrm{BP}: \mathrm{DP}:: \mathrm{BF}: \mathrm{DC}=$ $\frac{a t+2 t x}{a}=v$. Now the Equations $2 a x=y, a a+y y=t t$, and $\frac{a t+2 t x}{a}=v$, (by Prob. I.) give $2 a x=2 \dot{y}$, and $2 \dot{y} y=2 \dot{t} t$, and $\frac{a \dot{t}+2 \dot{x}+2 i x}{a}=\dot{v}$. Which being reduced to order, and putting $\dot{x}=\mathrm{I}$, there will arife $\dot{y}=\frac{a}{y}, \dot{t}=\left(\frac{j y}{t}=\right) \frac{a}{t}$, and $\dot{v}=\frac{a \dot{t}+2 \dot{t} x+2 t}{a}$. And thus j, \dot{t}, and \dot{v} being found, there will be had $\frac{w y}{t}$ the Index of the Inequability of Curvature.
9. As if in Numbers it were determin'd, that $a=1$, or $2 x=1 y$, and $x=\frac{1}{2} ;$ then $y(=\sqrt{ } 2 x)=\mathrm{I}, \dot{y}\left(-\frac{a}{y}\right)=\mathrm{r}, t(=\sqrt{a a+y}$ $\Longrightarrow \sqrt{ } 2, \dot{t}\left(=\frac{a}{t}\right)=\sqrt{\frac{1}{2}}$, and $v^{\circ}=\left(\frac{a t+2 t x+2 t}{a}=\right) 3 \sqrt{ } 2$. So that $\frac{i y}{t}=3$, which therefore is the Index of Inequability.
10. But if it were determin'd, that $x=2$, then $y=2, j=\frac{1}{2}$, $t=\sqrt{ } 5, \dot{t}=\sqrt{\frac{1}{5}}$, and $\dot{v}=3 \sqrt{ } 5$. So that $(\underline{y}=) 6$ willbehere the Index of Inequability.
11. Wherefore the Inequability of Curvature at the Point of the Curve, from whence an Ordinate, equal to the Latus rectum of the Parabola, being drawn perpendicular to the Axis, will-be double to the Inequability at that Point, from whence the Ordinate fo drawn is half the Latus rectum; that is, the Curvature at the firf Point is as unlike again to the Curvature of the Circle, as the Curvature at the fecond Point.
12. Ex. 2. Let the Equation be 2ax-bxx=yy, and (by Prob.4.) it will be $a-b x=\mathrm{BP}$, and thence $t=(a a-2 a b x+b b x x+y$ $\Longrightarrow a a-b y+y y$. Alfo (by Prob. 5.) it is $\mathrm{DH}=y+\frac{a^{3}-1}{a}$, where, if for $y y-b y y$ you fubftitute $t t-a a$, there arifes $\mathrm{DH}=$ $\frac{t / 4}{b: a}$. 'Tis alfo BD : DP :: DH: DC $=\frac{t^{3}}{\alpha^{2}}=\because$. Now (by Piob.i.) the Equations $2 a x-b x x=y y, a a-b y y+y y=t t$, and $\frac{13}{a,}=0$,
sive
give $a-b x=j y$, and $j y-b y=i t$, and $\frac{3^{i t t}}{a a}=\dot{v}$. And thus \dot{v} being found, the Index $\frac{v y}{t}$ of the Inequability of Curvature, will alfo be known.

33: Thus in the Ellipfis $2 x-3 \times x$ $=y y$, where it is $a=1$, and $b=3$; if we make $x=\frac{1}{2}$, then $y=\frac{1}{2}, y=$ $-1, t=\sqrt{ } \frac{1}{2}, t=\sqrt{ } 2, v=3 \sqrt{\frac{1}{2}}$, and therefore $\frac{v y}{t}=\frac{3}{2}$, which is the Index of the Inequability of Curvature. Hence it appears, that the Curvature of this Ellipfis, at the Point D here affign'd, is by two times lefs inequable, (or by two times more like to the Curvature of the Circle,) than the Curvature of the Parabola, at that Point of
 its Curve, from whence an Ordinate let fall upon the Axis is equal to half the Latus rectum.
14. If we have a mind to compare the Conclufions derived in there Examples, in the Parabola $2 a x=y y$ arifes $\left(\frac{i y}{t}=\right) \frac{3 y}{a}$ for the Index of Inequability; and in the Ellipfis $2 a x-b x x=y y$, arifes $\left(\frac{i y}{t}=\right) \frac{3 y-3 b y}{a a} \times \mathrm{BP}$; and fo in the Hyperbola $2 a x+b x x=y y$, the analogy being obferved, there arifes the Index $\left(\frac{x y}{t}=\right) \frac{3 v+3 l y}{a a}$ \times BP. Whence it is evident, that at the different Points of any Conic Section confider'd apart, the Inequability of Curvature is as the Rectangle $\mathrm{BD} \times \mathrm{BP}$. And that, at the feveral Points of the Parabola, it is as the Ordinate BD.
15. Now as the Parabola is the moft fimple Figure of thofe that are curved with inequable Curvature, and as the Inequability of its Curvature is fo eafily determined, (for its Index is $6 \times \frac{\text { Ordinate }}{\text { Lat. reft. }}$) therefore the Curvatures of other Curves may not improperly be compared to the Curvature of this.
16. As if it were inquired, what may be the Curvature of the Ellipfis $2 x-3 \times x=y y$, at that Point of the Perimeter which is determined by affuming $x=\frac{1}{2}$: Becaufe its Index is $\frac{3}{2}$, as before, it might be anfwer'd, that it is like the Curvature of the Parabola
$6 x=y y$, at that Point of the Curve, between which and the Axis the perpendicular O dinate is equal to $\frac{3}{3}$.
17. Thus, as the Fluxion of the Spiral ADE is to the Fluxion of the Subtenfe AD, in a certain given Ratio, fuppofe as d to e; on its concave fide erect $\mathrm{AP}=\frac{e}{\sqrt{d d-e t}} \times \mathrm{AD}$ perpendicular to AD , and P will be the Center of Curvature, and $\frac{A \mathrm{P}}{\mathrm{AD}}$ or $\frac{e}{\sqrt{d . l-c e}}$, will be the Index of Inequability. So that this Spiral has every where its Curvature alike inequable, as the Parabola $6 x=y y$ has in that Point of its Curve, from whence to its Abfcifs a perpendicular Ordinate is let fall, which is equal to the
 quantity $\frac{e}{\sqrt{d d-c e}}$.
18. And thus the Index of Inequability at any Point D of the Trochoid, (fee Fig. in Art. 29. pag. 64.) is found to be $\frac{A B}{B L}$. Wherefore its Curvature at the fame Point D is as inequable, or as unlike to that of a Circle, as the Curvature of any Parabola $a x=y y$ is at the Point where the Ordinate is $\frac{1}{\sigma} a \times \frac{A B}{B L}$.
19. And from thefe Confiderations the Senfe of the Problem, as I conceive, muft be plain enough; which being well underftood, it will not be difficult for any one, who obferves the Series of the things above deliver'd, to furnifh himfelf with more Examples, and to contrive many other Methods of operation, as occafion may require. So that he will be able to manage Problems of a like nature, (where he is not difcouraged by tedious and perplex Calculations,) with little or no difficulty. Such are thefe following;
I. To find the Point of any Curve, webere there is eitber no Incquability of Curvaturs, or infinite, or the greatef, or the leaft.
20. Thus at the Vertices of the Conic Scetions, there is no Inequability of Curvature; at the Cufpid of the Ircchoid it is irfinite ; and it is greateft at thofe Points of the Elliplis, where the Rectangle $\mathrm{BD} \times \mathrm{BP}$ is greateft, that is, where the Diagoral-Lines of the circumfcribed Parallelogram cut the Elliflis, whofe Sides touch it in their principal Vertices.
II. To determine a Curve of fome defunite Species, futpofe a Conic Section, weofe Curature at any Point may be equal and fimilar to the Curvatue of amy other Curve, at a given Point of it.
III. To ditermine a Conic Section, at any Paint of which, the Curvature and Pofition of the Tangent, (in refpect of the Axis,) may be like to the Curvature and Pofition of the Tengent, at a Point affign'd of any other Curve.
21. The ufe of which Problem is this, that inftead of Ellipfes of the fecond kind, whofe Properties of refracting Light are explain'd by Des Cartes in his Geometry, Conic Sections may be fubftituted, which fhall perform the fame thing, very nearly, as to their Refractions. And the fame may be underfood of other Curves.

PROB. VII.

To find as many Curves as you pleafe, wbofe Areas may be exbibited by finite Equations.

1. Let $A B$ be the $A b f c i f$ of a Curve, at whofe Vertex A let the perpendicular $\mathrm{AC}=\mathrm{I}$ be raifed, and let CE be drawn parallel to $A B$. Let alfo $D B$ be a rectangular Ordinate, meeting the right Line CE in E , and the Curve AD in D. And conceive thefe Areas ACEB and ADB to be generated by the right Lines BE and BD , as they move along the Line AB. Then their Increments or Fluxions will
 be always as the defcribing Lines BE and BD . Wherefore make the Parallelogram ACEB , or $\mathrm{AB} \times 1,=x$, and the Area of the Curve ADB call z. And the Fluxions \dot{x} and \dot{z} will be as $B E$ and BD ; fo that making $\dot{x}=\mathrm{I}=\mathrm{BE}$, then $\dot{z}=\mathrm{BD}$.
2. Now if any Equation be affumed at pleafure, for determining the relation of \approx and x, from thence, (by Prob. r.) may \approx be derived. And thus there will be two Equations, the latter of which will determinc the Curve, and the former its Area.

ExAmples.

3. Aflume $x x=\approx$, and thence (by Prob. 1.) $2 x x=\approx$, or $2 x=\dot{\approx}$, becaufe $x=1$.
4. Affume $\frac{x^{3}}{a}=\approx$, and thence will arife $\frac{3 x^{2}}{a}=\dot{z}$, an Equation to the Parabola.
5. Affume $a x^{3}=z z$, or $a^{\frac{1}{2}} x^{\frac{3}{2}}=z$, and there will arife $\frac{3}{2} a^{\frac{1}{2}} x^{\frac{1}{2}}=z$, or $\frac{9}{4} a x=z z$, an Equation again to the Parabola.
6. Afiume $a^{6} x^{-2}=z z ;$ or $a^{3} x^{-1}=z$, and there arifes $-a^{3} x^{-2}=\ddot{z}$, or $a^{3}+\dot{z} x x=0$. Here the negative Value of z only infinuates, that $B D$ is to be taken the contrary way from BE.
7. Again if you affume $c^{2} a^{2}+c^{2} x^{2}=z^{2}$, you will have $2 c^{2} x$ $=2 z \dot{z}$; and z being eliminated, there will arife $\frac{c x}{\sqrt{a i+x x}}=\dot{z}$.
8. Or if you aflume $\frac{a a+x x}{b} \sqrt{a a+x x}=z$, make $\sqrt{a a+x x}$ $=v$, and it will be $\frac{v 3}{b}=z$, and then (by Prob.i.) $\frac{3^{i v v v}}{6}=\dot{z}$. Alio the Equation $a a+x x=v v$ gives $2 x=2 v v$, by the help of which if you exterminate \dot{v}, it will become $\frac{3 u x}{i}=\dot{z}=\frac{3 x}{b} \sqrt{a a+x x}$.
9. Laftly, if you affume $8-3 x z+\frac{2}{5} \approx=z z$, you will obtain $-3 z-3 x z+\frac{1}{5} \dot{z}=2 \dot{z} \approx$. Wherefore by the aflumed Equation firt feek the Area z, and then the Ordinate \approx by the refulting Equation.
10. And thus from the Areas, however they may be feign'd, you may always determine the Ordinates to which they belong.

P R O B. VIII.

To find as many Curves as you pleafe, whofe Areas Joall bave a relation to the Area of any given Curve, affognable by finite Equations.
r. Let FDH be a given Curve, and GEI the Curve required, and conceive their Ordinates DB and EC to move at right Angles upon

their Abfciffes or Bafes $A B$ and $A C$. Then the Increments or Fluxions of the Areas which they defcribe, will be as thofe Ordinates drawn
into their Velocities of moving, that is, into the Fluxions of their Abfcifles. Therefore make $\mathrm{AB}=x, \mathrm{BD}=v, \mathrm{AC}=z$, and $\mathrm{CE}=y$, the Area $\mathrm{AFDB}=s$, and the Area $\mathrm{AGEC}=t$, and let the Fluxions of the Areas be \dot{s} and \dot{t} : And it will be $\dot{x} v: \dot{z} y:: \dot{s}: \dot{t}$. Therefore if we fuppofe $\dot{x}=1$, and $v=\dot{s}$, as before; it will be $\dot{z} y=\dot{t}$, and thence $\stackrel{\dot{c}}{\dot{z}}=y$.
2. Therefore let any two Equations be affumed; one of which may exprefs the relation of the Areas s and t, and the other the relation of their Abfciffes x and \approx, and thence, (by Prob. r.) let the Fluxions \dot{t} and \dot{z} be found, and then make $\frac{\dot{t}}{z}=y$.
3. Ex. r. Let the given Curve FDH be a Circle, exprefs'd by the Equation $a x-x x=v v$, and let other Curves be fought, whofe Areas may be equal to that of the Circle. Therefore by the Hypothefis $s=t$, and thence $\dot{s}=\dot{t}$, and $y=\frac{\dot{i}}{z}=\frac{v}{\dot{z}}$. It remains to determine \dot{z}, by affuming fome relation between the Abfciffes x and z.
4. As if you fuppofe $a x=z z$; then (by Prob. 1.) $a=2 z z$: So that fubftituting $\frac{a}{2 z}$ for \dot{z}, then $y=\frac{v}{\dot{z}}=\frac{2 v z}{a}$. But it is $v=$ $(\sqrt{a x-x x}=) \frac{z}{a} \sqrt{a a-z z}$, therefore $\frac{2 z z}{a a} \sqrt{a a-z z}=y$ is the Equation to the Curve, whofe Area is equal to that of the Circle.
5. After the fame manner if you fuppofe $x x=z$, there will arife $2 x=z$, and thence $y=\left(\frac{v}{z}=\right) \frac{v}{2 x}$; whence v and x being exterminated, it will be $y=\frac{\sqrt{a z^{\frac{1}{2}}-z}}{2 \pi^{\frac{1}{2}}}$.
6. Or if you fuppofe $c c=x z$, there arifes $0=z+x \dot{\sim}$, and thence $-\frac{v x}{z}=y=-\frac{c^{3}}{z^{3}} \sqrt{a z-c c}$.
7. Again, fuppofing $a x+\frac{s}{1}=z$, (by Prob. I.) it is $a+\dot{s}=\dot{z}$, and thence $\frac{v}{a+j}=y=\frac{z}{a+v}$, which denotes a mechanical Curve.
8. Ex. 2. Let the Circle $a x-x x=v v$ be given again, and let Curves be fought, whofe Areas may have any other aftumed relation to the Area of the Circle. As if you affume $c x+s=t$, and fuppore alfo $a x=z z$. (By Prob. I.) 'tis $c+\dot{s}=\dot{t}$, and $a=2 \dot{z} z$.

Therefore $y=\frac{i}{\dot{z}}=\frac{2 a+2 i z}{a}$; and fubftituting $\sqrt{a x-x x}$ for \dot{s}, and $\frac{z z}{a}$ for x, 'tis $y=\frac{2 c z}{a}+\frac{2 z z}{a a} \sqrt{a n-z z}$.
9. But if you affiume $s-\frac{2 \tau 3}{3 a}=t$, and $x=z$, you will have $\dot{s}-\frac{2 \dot{v} v^{2}}{a}=\dot{t}$, and $\mathrm{I}=\dot{z}$. Therefore $y=\frac{i}{z}=\dot{s}-\frac{2 \dot{i v \mu^{2}}}{a}$, or $=v-\frac{2 \dot{v} v^{2}}{a}$. Now for exterminating \dot{v}, the Equation $a x-x \cdot x$ $=v v$, (by Prob. i.) gives $a-2 x=2 v v$, and therefore 'tis $y=$ $\frac{2 v x}{a}$. Where if you expunge v and x by fubftituting their values $\sqrt{a x-x x}$ and \approx, there will arife $y=\frac{2 z}{a} \sqrt{a z-z z}$.
10. But if you affime ss $=t$, and $x=z z$, there will arife $2 \dot{s s}=\dot{t}$, and $\mathrm{I}=2 \dot{z} ;$; and therefore $y={ }_{\frac{t}{z}}^{\dot{z}}=4 s s z$. And for s and x fubfituting $\sqrt{a x-x x}$ and $z z$, it will become $y=4 s z z$
$\sqrt{a-z z}$, which is an Equation to a mechanical Curve.
11. Ex. 3. After the fane manner Figures may be found, which have an affumed relation to any other given Figure. Let the Hyperbola $c c+x x=v v$ be given; then if you affume $s=t$, and $x x=c z$, you will have $\dot{s}=\dot{t}$ and $2 x=c z$; and thence $y=$ $\frac{t}{\dot{z}}=\frac{\dot{s}}{2 x^{x}}$. Then fubftituting $\sqrt{c c+x x}$ for \dot{s}, and $c^{\frac{1}{2} z^{\frac{T}{2}}}$ for x, it will be $y=\frac{c}{2 z} \sqrt{c z+z z}$.
12. And thus if you affume $x v$ - $=t$, and $x x=c z$, you will have $v+z x-s=t$, and $2 x=c z$. But $v=s$, and thence $\dot{v} x=i$. Therefore $y=\frac{i}{z}=\frac{c v}{\approx}$. But now (by Prob. 1.) $c c+x x$ $=\operatorname{vo}$ gives $x=\dot{v} v$, and 'tis $y=\frac{c x}{2 v}$. Then fubfituting $\sqrt{6+x x}$ for v, and $c^{\frac{1}{2}} z^{\frac{1}{2}}$ for x, it becomes $y=\frac{c}{2 \sqrt{\sqrt{z}+z_{z}}}$.
13. Ex. 4. Moreover if the Ciffoid $\frac{x x}{\sqrt{a x-x x}}=v$ were given, to which other related Figures are to be found, and for that purpofe you affume $\frac{x}{3} \sqrt{a x-x x}+\frac{2}{3} s=t$; fuppofe $\frac{x}{3} \sqrt{a x-x x}=b$, and its Fluxion \dot{b}; therefore $\dot{b}+\frac{{ }^{2}}{3} j=\dot{M}$. But the Equation $\frac{\frac{a x i-24}{2}}{=b b}$
$=$ bh ceives $\frac{3 x^{2}-44^{3}}{9}=2 . b$, where if you exterminate b, it will be
 'twill be $\frac{a x}{\sqrt{a x-2 x}}=\dot{t}$. Now to determine z and \dot{z}, affume $\sqrt{a a-a x}=z$; then (by Prob. 1.) $-a=2 \dot{z} z$, or $\dot{z}=-\frac{a}{2 \dot{z}}$. Wherefore it is $y=\left(\frac{i}{z}=\frac{-z x}{\sqrt{a x-x x}}=\sqrt{\frac{z z v}{a-x}}=\sqrt{ } a x \Rightarrow\right.$ $\sqrt{a a-z \approx}$. And as this Equation belongs to the Circle, we fhall have the relation of the Areas of the Circle and of the Ciffoid.
14. And thus if you had affiumed $\frac{2 x}{3} \sqrt{a x-x x}+\frac{1}{3} s=t$, and $x=z$, there would have been derived $y=\sqrt{a z-z z}$, an Equation again to the Circle.
15. In like manner if any mechanical Curve were given, other mechanical Curves related to it might be found. But to derive geometrical Curves, it will be convenient, that of right Lines depending Geometrically on each other, fome one may be taken for the Bafe or Abfcirs; and that the Area which compleats the Parallelogram be fought, by fuppofing its Fluxion to be equivalent to the Abfcifs, drawn into the Fluxion of the Ordinate.
16. Ex. 5. Thus the Trochoid ADF being propofed, I refer it to the Abrcifs AB ; and the Parallelogram ABDG being compleated, I feek for the complemental Superficies ADG, by fuppofing it to be defrribed by the Motion of the right Line

$G D$, and therefore its Fluxion to be equivalent to the Line GD drawn into the Velocity of the Motion ; that is, $x \times \dot{v}$. Now whereas $A L$ is parallel to the Tangent $D T$, therefore $A B$ will be to $B L$ as the Fluxion of the fame $A B$ to the Fluxion of the Ordinate $B D$,
that is, as I to \dot{v}. So that $\dot{v}=\frac{B L}{A B}$, and therefore $x \dot{v}=B L$. Therefore the Area ADG is defcribed by the Fluxion BL; fince therefore the circular Area ALB is defcribed by the fame Fluxion, they will be equal.
17. In like manner if you conceive ADF to be a Figure of Arches, or of verfed Sines, that is, whofe Ordinate BD is equal to the Arch $A L$; fince the Fluxion of the Arch $A L$ is to the Fluxion of the $A b f c i f s ~ A B$, as $P L$ to $B L$, that is, $\dot{j}: 1:: \frac{1}{2} a: \sqrt{a x-x x}$, then $\dot{v}=\frac{a}{2 \sqrt{u x-x} \cdot \dot{x}}$. Then $\dot{v} x$, the Fluxion of the Area ADG, will be $\frac{n x}{2 \sqrt{4 x}-x x}$. Wherefore if a right Line equal to $\frac{n x}{2 \sqrt{10-x x}}$ be conceived to be apply'd as a rectangular Ordinate at B , a point of the Line $A B$, it will be terminated at a certain geometrical Curve, whofe Area, adjoining to the Abfcifs $A B$, is equal to the Area ADG.
18. And thus geometrical Figures may be found equal to other Figurcs, made by the application (in any Angle) of Arches of a Circle, of an Hyperbola, or of any other Curve, to the Sines right or verfed of thofe Arches, or to any other right Lines that may be Geometrically determin'd. T
19. As to Spirals, the matter will be very fhort. For from the Center of Rotation A, the Arcl. DG being defcribed, with any Radius AG, cutting the right Line AF in G, and the Spiral in D; fince that Arch, as a Line moving upon the Abfcifs AG, defcribes the Area of the Spiral AHDG, fo that the Fluxion of that Area is to the Fluxion of the Rectangle $1 \times A G$, as the Arch GD to I; if you raife the perpendicular right Line GL equal to that Arch, by moving in like manner upon the fame Line AG, it will defcribe the Area A/LG equal to the Area of the Spiral AHDG: The Curve AlL being a geometrical Curve.
 And farthacr, if the Subtenfe $A L$ be drawn, then $\triangle A L G=\frac{1}{2} A G$ $\times \mathrm{GL}=\frac{1}{2} \mathrm{AG} \times \mathrm{GD}=$ Sector AGD ; therefore the complemental Segments ALl and ADH will alfo be equal. And this not only agrees to the Spiral of Arcbimedes, (in which cafe A/L becomes the Parabola of Afollonius,) but to any other whatever; fo that all of them may be converted into equal geometrical Curves with the fame eafe.
20. I might have produced more Specimens of the Conftruction of this Problem, but thefe may fuffice; as being fo general, that whatever as yet has been found out concerning the Areas of Curves, or (I believe) can be found out, is in fome manner contain'd herein, and is here determined for the moft part with lefs trouble, and without the ufual perplexities.
21. But the chief ufe of this and the foregoing Problem is, that affuming the Conic Sections, or any uther Curves of a known magnitude, other Curves may be found out that may be compared with there, and that their defining Equations may be difpofed orderly in a Catalogue or Table. And when fuch a Table is conftructed, when the Area of any Curve is to be found, if its defining Equation be either immediately found in the Table, or may be transformed into another that is contain'd in the Table, then its Area may be known. Moreover fuch a Catalogue or Table may be apply'd to the determining of the Lengths of Curves, to the finding of their Centers of Gravity, their Solids generated by their rotation, the Superficies of thofe Solids, and to the finding of any other flowing quantity produced by a Fluxion analogous to it.

P R O B. IX.

To determine the Area of any Curve propofed.

1. The refolution of the Problem depends upon this, that from the relation of the Fluxions being given, the relation of the Fluents may be found, (as in Prob. 2.) And firft, if the right Line BD, by the motion of which the Area required AFDB is defcribed, move upright upon an Abfcifs AB given in pofition, conceive (as before) the Parallelogram $A B E C$ to be defcribed in the mean time on the other fide $A B$, by a line equal to unity. And BE being fuppos'd the Fluxion of the Parallelogram, BD will be the Fluxion of the Area
 required.
2. Therefore make $\mathrm{AB}=x$, and then alfo $\mathrm{ABEC}=1 \times x=x$, and $\mathrm{BE}=\dot{x}$. Call alfo the Area $\mathrm{AFDB}=z$, and it will be $\mathrm{BD}=\dot{z}$, as alfo $=\frac{\dot{z}}{\dot{x}}$, becaufe $\dot{x}=\mathrm{r}$. Therefore by the Equation expreffing BD , at the fame time the ratio of the Fluions $\frac{\dot{z}}{\dot{x}}$
is exprefs'd, and thence (by Prob. 2. Cafe I.) may be found the relation of the flowing quantities x and z.
3. Ex.i. When BD, or \ddot{z}, is equal to fome fimple quantity.
4. Let there be given $\frac{x x}{a}=\dot{z}$, or $\frac{z}{x}$, (the Equation to the Parabola,) and (Prob. 2.) there will arife $\frac{x^{3}}{3 a}=\approx$. Therefore $\frac{x^{3}}{3 a^{3}}$ or $\frac{1}{3} \mathrm{AB} \times \mathrm{BD},=$ Area of the Parabola AFDB.
5. Let there be given $\frac{x 3}{a}=\dot{z}$, (an Equation to a Parabola of the fecond kind,) and there will arife $\frac{x^{4}}{4^{a^{2}}}=z$, that is, $\frac{\pi}{4} \mathrm{AB} \times \mathrm{BD}$ $=$ Area AFDB.
6. Let there be given $\frac{a^{3}}{x \cdot x}=\dot{z}$, or $a^{3} x^{-2}=\dot{z}$, (an Equation to an Hyperbola of the fecond kind,) and there will arife $-a^{3} x^{-x}=z$, or $-\frac{a^{3}}{x}=z$. That is, $\mathrm{AB} \times \mathrm{BD}$
 $=$ Area HDBH , of an infinite length, lying on the other fide of the Ordinate BD , as its negative value infinuates.
7. And thus if there were given $\frac{a^{4}}{x^{3}}=\dot{z}$, there would arife $-\frac{a^{4}}{2 x x}=z$.
8. Moreover, let $a x=\dot{z} \dot{z}$, or $a^{\frac{1}{2}} x^{\frac{1}{2}}=\dot{z}$, (an Equation again to the Parabola,) and there will arife $\frac{2}{3} a^{\frac{1}{2}} x^{\frac{3}{2}}=\mathcal{Z}$, that is, $\frac{2}{3} \mathrm{AB}$ $\times \mathrm{BD}=$ Area AFDB .
9. Let $\frac{a^{3}}{x}=\dot{z} \dot{z}$; then $-2 a^{\frac{3}{2}} x^{\frac{1}{2}}=z$, or $2 \mathrm{AB} \times \mathrm{BD}=\mathrm{AFDH}$.
10. Let $\frac{a^{5}}{x^{3}}=\approx \approx$; then $-\frac{2 a^{\frac{5}{2}}}{x_{\frac{1}{2}}^{1}}=z$, or $2 \mathrm{AB} \times \mathrm{BD}=\mathrm{HDBH}$.
II. Let $a x^{2}=\dot{z}^{3}$; then $\frac{3}{5} a^{\frac{5}{3}} x^{\frac{5}{3}}=z$, or $\frac{3}{5} \mathrm{AB} \times \mathrm{BD}=\mathrm{AFDH}$. And fo in others.
11. Ex. 2. Where \dot{z} is equal to an Aggregate of fuch Quantities.
12. Let $x+\frac{x x}{a}=\dot{z}$; then $\frac{x x}{2}+\frac{x x x}{3^{a}}=z$.
13. Let $a+\frac{a^{3}}{x x}=\dot{z}$; then $a x-\frac{a^{3}}{x}=z$.
14. Let $3 x^{\frac{1}{2}}-\frac{5}{x x}-\frac{2}{x^{\frac{1}{2}}}=\dot{z}$; then $2 x^{\frac{3}{2}}+\frac{5}{x}-4 x^{\frac{\pi}{2}}=z$.
15. Ex. 3. Where a previous reduction by Divifion is required.
16. Let there be given $\frac{a a}{b+x}$, $=\dot{z}$ (an Equation to the Apollonian Hyperbola,) and the divifion being performed in infinitum, it will be
$\dot{z}=\frac{a a}{b}-\frac{a a x}{l^{2}}+\frac{a a x^{2}}{b^{3}}-\frac{a a x^{3}}{l^{4}}$, \&cc. And thence, (by Prob. 2.) as in the fecond Set of Examples, you will obtain $z=\frac{a^{2} x}{b}-\frac{a^{2} x^{2}}{2 b^{2}}$ $+\frac{\frac{i}{2}^{2} x^{3}}{5^{3}}-\frac{a^{2} \times 4}{4^{4}}, \delta x c$.
17. Let there be given $\frac{1}{1+x x}=\dot{z}$, and by divifion it will be $\dot{z}=1-x^{2}+x^{4}-x^{6}$, scc. or elfe $\dot{z}=\frac{1}{x^{2}}-\frac{1}{x^{4}}+\frac{1}{x^{6}}$, \&cc. And thence (by Prob. 2.) $z=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{9} x^{7}, \& c$. $=\mathrm{AFDB}$; or $z=-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{3}}$, $\& \mathrm{c}$. $=\mathrm{HDBH}$.
18. Let there be given $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1+x_{2}^{\frac{1}{2}}-3 x}=\dot{z}$, and by divifion it will be $\dot{z}=2 x^{\frac{1}{2}}-2 x+7 x^{\frac{3}{2}}-13 x^{2}+34 x^{\frac{5}{2}}$, \&cc. And thence (by Prob. 2.) $\approx=\frac{4}{3} x^{\frac{1}{2}}-x^{2}+\frac{{ }_{5}^{4}}{5} x^{\frac{5}{2}}-\frac{15}{3} x^{3}+\frac{68}{5} x^{\frac{7}{2}}, \& \%$.
19. Ex. 4. Where a previous reduction is required by Extraction of Roots.
20. Let there be given $\dot{z}=\sqrt{a a+x x}$, (an Equation to the Hyperbola,) and the Root being extracted to an infinite multitude of terms, it will be $\dot{z}=a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{112 a^{7}}, 8 c$. whence as in the foregoing $z=a x+\frac{x 3}{6 a}-\frac{x^{5}}{40 a^{3}}+\frac{x^{7}}{1!a^{4} a^{5}}-\frac{5 x^{9}}{1008 a^{7}}, 8 c \mathrm{c}$.
21. In the fame manner if the Equation $\dot{z}=\sqrt{a a-x x}$ were given, (which is to the Circle,) there would be produced $z=a x$ $\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}-\frac{x^{7}}{112 a^{5}}-\frac{5 x^{9}}{1008 \alpha^{7}}, \delta \mathrm{cc}$.
22. And fo if there were given $\dot{z}=\sqrt{x-x x}$, (an Equation alfo to the Circle,) by extracting the Root there would arife $\tilde{z}=x^{\frac{1}{2}}-\frac{1}{\frac{1}{2}} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{y^{3}}{2}}-\frac{1}{\frac{1}{6}} x^{\frac{3}{2}}$, \&c. And therefore $z=\frac{\frac{1}{3}}{} x^{\frac{2}{2}}$

23. Thus $\dot{\approx}=\sqrt{a a+b x-x x}$, (an Equation again to the Circle,) by extraction of the Root it gives $z=a+\frac{b x}{2 a}-\frac{x x}{2 a}-\frac{b_{2} x^{2}}{8 a \beta}$, \&c. whence $z=a x+\frac{b x^{2}}{4 a}-\frac{x^{3}}{6 a}-\frac{b z^{2,5}}{24 a^{3}}, \&$ c.
24. And thus $\sqrt{\frac{1}{1-6 x x}}=z$, by a due reduction gives $z=1+\frac{1}{2} b x^{2}+\frac{3}{8} b b x^{4}, \& x c$. then $z=x+\frac{1}{6} b x^{3}+\frac{3}{40} b b x^{-5}, \& c c$.
25. Thus finally $\dot{z}=\sqrt[3]{a^{3}+x^{3}}$, by the extraction of the Cubic Root, gives $z=a+\frac{\nu^{3}}{3 a^{2}}-\frac{x^{6}}{9 a^{4}}+\frac{5 x^{9}}{81 a^{8}}$, \&c. and then (by Prob. 2.) $z=a x+\frac{2^{4}}{12 a^{2}}-\frac{x^{7}}{63^{4} a^{5}}+\frac{x^{10}}{162 \varepsilon^{8}}, \& \mathrm{cc}$. $=$ AFDB. Or elfe $\dot{z}=x+$ $\frac{a^{3}}{3 x x}-\frac{a^{6}}{9 x^{5}}+\frac{\frac{a^{9}}{}}{S+x^{8}}, \& c$. And thence $\approx=\frac{x^{2}}{2}-\frac{a^{3}}{3 x}+\frac{a^{6}}{36 x^{4}}-$ $\frac{56^{9}}{56 x^{* 1}}, \delta \varepsilon c .=\mathrm{HDBH}$.
26. Ex. 5. Where a previous reduction is required, by the refolution of an affected Equation.
27. If a Curve be defined by this Equation $\dot{z}^{3}+a^{2} \dot{z}+a x \dot{z}$ $-2 a^{3}-x^{3}=0$, extract the Root, and there will arife $\dot{z}=a-\frac{x}{4}$ $+\frac{x x}{\sigma_{42}}+\frac{\frac{13,1 x}{}}{512 z a}, \delta c c$. whence will be obtain'd as before $z=a x-$ $\frac{x x}{8}+\frac{x^{3}}{192 a}+\frac{131 \times 4}{20.8 \alpha_{a}}, \& c$ c.
28. But if $z^{3}-c^{2}-2 x^{2} z-c^{2} \dot{z}+2 x^{3}+c^{3}=0$ were the Equation to the Curve, the refolution will afford a three-fold Root; either $\dot{z}=c+\dot{x}-\frac{x x}{4 c}+\frac{x^{3}}{3 z^{2}}, \& c$. or $\dot{z}=c-x+\frac{3 x^{2}}{44}-\frac{1 \frac{15 x^{3}}{32 c c^{2}}}{}$ $\& c$. or $\dot{\sim}=-c-\frac{x^{2}}{2 c}-\frac{x^{3}}{2 c c}+\frac{x^{5}}{44^{4}}$ \&c. And hence will arife the values of the three correfponding Areas, $z=c x+\frac{1}{2} x^{2}-\frac{x^{3}}{12 c}$ $+\frac{x^{4}}{128 \alpha^{2}}, \delta c c . z=c x-\frac{1}{2} x^{2}+\frac{x^{3}}{46}-\frac{15 \times 4}{128 c^{2}}, \delta c e$. and $z=-c x-$ $\frac{x^{3}}{b_{c}}-\frac{x^{4}}{8, c^{2}}+\frac{x^{6}}{24,4}, 8 c c$.
29. I add nothing here concerning mechanical Curves, becaure their reduction to the form of geometrical Curves will be taught after wards.

3 I. But whereas the values of \approx thus found belong to Areas which are fituate, fometimes to a finite part $A B$ of the Abfiifs, fometimes to a part BH produced infinitely towards H , and fometimes to both parts, according to their different terms: That the due value of the Area may be affign'd, adjacent to any portion of the Abfciis, that Area is always to be made equal to the difference of the values of z, which belong to the parts of the Abfcifs, that are terminated at the beginning and end of the Area.
32. For Inftance ; to the Curve exprefs'd by the Equation $\frac{1}{1+2 x}$
$=\dot{\sim}$, it is found that $z=x-\frac{1}{3} x^{3}$ $+\frac{1}{5} x^{5}$, \&xc. Now that I may determine the quantity of the Area $b d \mathrm{DR}$, adjacent to the part of the Abfcifs $b B$; from the value of z which arifes by putting $A B=x$,
 I take the value of z which arifes by putting $\mathrm{A} b=x$, and there remains $x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}, \& c c$. $-x+\frac{1}{3} x^{3}-\frac{1}{5} x^{5}, \& \mathrm{cc}$. the value of that Area $b d \mathrm{D} \mathrm{B}$. Whence if $\mathrm{A} b$, or x, be put equal to nothing, zyere will be had the whole Area $A F D B=x-\frac{1}{3} x^{3}+\frac{9}{5} x^{5}, \& c$.
33. To the fame Curwe there is alfo found $z=-\frac{1}{x}+\frac{1}{3 \times 8}$ $-\frac{1}{5 x^{5}}$, \&c. Whence again, according to what is before, the Area $b d \mathrm{DB}=\frac{1}{x}-\frac{1}{3 x^{3}}+\frac{1}{5 x^{5}}, 8 c c$. $-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}$, \&cc. Therefore if $A B$, or x, be fuppofed infinite, the adjoining Area $b d \mathrm{H}$ toward H, which is alfo infinitely long, will be equivalent to $\frac{1}{x}-\frac{1}{3^{3}}$ $+\frac{1}{5 x^{5}}$, \&cc. For the latter Series $-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}$, \&xc. will vanifh, becaufe of its infinite denominators.
34. To the Curve reprefented by the Equation $a+\frac{a^{3}}{x_{x}}=\dot{z}$, it $\mathrm{i}^{\text {s }}$ found, that $z=a x-\frac{a^{3}}{x}$. Whence it is that $a x-\frac{a^{3}}{x}-a x$ $+\frac{a^{3}}{x}=$ Area $b d \mathrm{DB}$. But this becomes infinite, whether x be fuppofed nothing, or x infinite; and therefore each Area AFDB and $b d \mathrm{H}$ is infinitely great, and the intermediate parts alone, fuch as $b d \mathrm{DB}$, can be exhibited. And this always happens when the $\mathrm{Ab}-$ fcifs x is found as well in the numerators of fome of the terms, as in the denominators of others, of the value of z. But when x is only found in the numerators, as in the firft Example, the value of \approx belongs to the Area fituate at AB , on this fide the Ordinate. And when it is only in the denominators, as in the fecond Example, that value, when the figns of all the terms are changed, belongs to the whole Area infinitely produced beyond the Ordinate.
35. If at any time the Curve-line cuts the Abfcifs, between the points b and B, fuppofe in E, inftead of the Area will be had the difference $b d \mathrm{E}-\mathrm{BDE}$ of the Areas at the different parts of the Abfcifs; to which if there be added the Rectangle BDG b, ${ }_{t}{ }^{\text {h }}$ he Area dEDG will be obtain'd.

36. But it is chiefly to be regarded, that when in the value of z any term is divided by x of only one dimenfion; the Area correfponding to that term belongs to the Conical Hyperbola; and therefore is to be exhibited by it felf, in an infinite Series : As is done in what follows.
37. Let $\frac{a^{3}-a^{2} x}{a x+x x}=\dot{z}$ be an Equation to a Curve ; and by divifion it becomes $\dot{\boldsymbol{z}}=\frac{a a}{x}-2 a+2 x-\frac{2 x^{2}}{a}+\frac{2 x^{3}}{a a}, 8 c$. and thence $z=\left|\frac{\bar{a} a}{x}\right|-2 a x+x^{2}-\frac{2 x^{3}}{3 a}+\frac{x^{4},}{2 a^{2}} \& \mathrm{c}$. And the Area $b d \mathrm{DB}$ $=\left|\frac{a a}{x}\right|-2 a \mathrm{x}+\mathrm{x}^{2}-\frac{2 x^{3}}{3 a}, \left.8 \mathrm{cc}-\left|\frac{a a}{x}\right|+2 a x-x x+\frac{2 x^{3}}{3 a} \right\rvert\, 8 \mathrm{c} \mathrm{c}$. Where by the Marks $\left|\frac{\bar{a}}{\underline{x}}\right|$ and $\left|\frac{a a}{\underline{x}}\right|$ I denote the little Areas belonging to the Terms $\frac{a a}{x}$ and $\frac{a a}{x}$.
38. Now that $\left.\frac{\sqrt{x} x}{x} \right\rvert\,$ and $\left.\frac{a \pi}{\frac{a \pi}{x}} \right\rvert\,$ may be found, I make $A b$, or x, to be definite, and $b \mathrm{~B}$ indefinite, or a flowing Line, which therefore I call y; fo that it will be $\frac{\frac{a a}{x+y}}{x}=$ to that Hyperbolical Area adjoining to $b \mathrm{~B}$, that is, $\frac{2 a}{x}\left|-\frac{a y}{x}\right|$. But by Divifion it will be $\frac{a a}{x+y}=\frac{a a}{x}$ $-\frac{a^{2} y}{x^{2}}+\frac{a^{2} y^{2}}{x^{3}}-\frac{a^{2} y^{3}}{x^{4}}$, \&cc. and therefore, $\left\lvert\, \frac{a a}{\left.x+\frac{x a}{x} \right\rvert\,}\right.$ or $\left|\frac{a y}{x}\right|-\left|\frac{a u}{x}\right|=\frac{a^{2} y}{x}$ $-\frac{a^{2} y^{2}}{2 x^{2}}+\frac{a^{2} y^{3}}{3 \cdot x^{3}}-\frac{a^{2} y^{4}}{4 x^{4}}$, \&xc. and therefore the whole Area required $b d \mathrm{DB}=\frac{a^{2} y}{x}-\frac{a^{2} y^{2}}{2 x^{2}}+\frac{a^{2} y^{3}}{3 x^{3}}, \& \delta \mathrm{c} .-2 a \mathrm{x}+\mathrm{x}^{2}-\frac{2 x^{3}}{3 a}, \& \mathrm{c} .+2 a x$ $-x x+\frac{2 \lambda^{3}}{3 a}, 8 \mathrm{cc}$.
39. After the fame manner, $A B$, or x, might have been ufed for
 $\frac{a^{2} y^{2}}{2 \lambda^{2}}+\frac{\sigma^{2} y^{3}}{3 \lambda^{3}}+\frac{a^{2} y^{4}}{4 \lambda^{4}}$, $\delta x c$.
40. Moreover, if $b B$ be bifected in C, and $A C$ be affumed to be of a definite length, and $C b$ and $C B$ indefinite; then making $A C$ $=e$, and $\mathrm{C} b$ or $\mathrm{CB}=y$, twill be $b d=\frac{a a}{c-y}=\frac{a a}{e}+\frac{a^{2} y}{c^{2}}+\frac{a^{2} y^{2}}{b^{3}}$ $+\frac{\left.a^{2}\right)^{3}}{t^{4}}+\frac{\left.a^{2}\right)^{4}}{t^{5}}$, \&cc. and therefore the Hyperbolical Area adjacent N 2

The Melbol of Fluxions,

to the Part of the Abfifis $b C$ will be $\frac{a^{2} v}{e}+\frac{a^{2} y^{2}}{2 e^{2}}+\frac{a^{2} v^{3}}{3 \cdot 3}+\frac{a^{2}, 4}{4^{4}}$, Ecc. 'Twill be alfo $\mathrm{DB}=\frac{a a}{+y}=\frac{a a}{e}-\frac{a a y}{t^{2}}+\frac{a r y^{2}}{c^{3}}-\frac{a \cdot 3^{3}}{c^{4}}+\frac{a a, .^{4}}{c^{5}}$,穊c. And therefore the Area adjacent to the other part of the Abrifs CB $=\frac{a^{2} y}{c}-\frac{a^{2} v^{2}}{2 e^{2}}+\frac{a^{2} 3^{3}}{3 e^{3}}-\frac{a^{2} j^{4}}{4 \cdot 4}+\frac{a^{2}, 5}{5 a^{5}, ~ \& ~} 8$ c. And the Sum of thefe Areas. $\frac{2 a^{2} y}{e}+\frac{2 a^{2}, 3^{3}}{3 a^{3}}-\frac{2 a^{2}, 5}{5,5}$, scc. will be equivalent to $\frac{a a}{x}$ $-\frac{a \pi}{x}$
41. Thus in the Equation $\dot{z}^{3}+\dot{z}^{2}+\dot{z}-x^{3}=0$, denoting the nature of a Curve, its Root will be $\dot{z}=x-\frac{1}{3}-\frac{2}{4 x}+\frac{7}{81+x}+\frac{5}{81 \times 3}$, \&x. Whence there arifes $z=\frac{1}{2} x x-\frac{1}{3} x-\sqrt{\frac{2}{9}-\frac{7}{81 x}-\frac{5}{162 x} x}$, \&cc. And the Area $b d \mathrm{DB}=\frac{1}{2} \mathrm{x}^{2}-\frac{1}{3} \mathrm{x}-\frac{2}{9 x}-\frac{7}{81 x^{2}}, \& \mathrm{c}$. $-\frac{1}{2} x x+\frac{1}{3} x+\frac{\frac{2}{9 x}}{\square 1 . x}$, \&c. that is, $=\frac{7}{2} \mathrm{x}^{2}-\frac{1}{3} x-\frac{7}{81 x}$ Sxc. $-\frac{1}{2} x^{2}+\frac{1}{3} x+\frac{7}{81, x}$ \& $\delta c . \frac{4 y}{9 e}-\frac{4)^{3}}{270^{3}}-\frac{4 .^{5}}{45 c^{5}}$, \& ©c.
42. But this Hyperbolical term, for the moft part, may be very commodionfly avoided, by altering the beginning of the Abfciss, that is, by increafing or diminifling it by fome giten quantity. As in the former Example, where $\frac{a^{3}-a^{2} x}{a x+x x}=z$ was the Equation to the Curve, if I fhould make b to be the beginning of the Abfcifs, and fuppofing $\mathrm{A} b$ to be of any dcterminate length $\frac{1}{2} a$, for the remainder of the Abfifs $b \mathrm{~B}$, I fall now write x : That is, if I diminith the Abfifs by $\frac{1}{2} a$, by writing $x+\frac{1}{2} a$ inftead of x, it will become $\frac{\frac{1}{2} a^{3}-a^{2} x}{\frac{1}{4} a^{2}+2 a x+x^{2}}=z$, and (by Divifion) $z=\frac{2}{3} a-\frac{28}{9} x$ $+\frac{200 x^{2}}{27 a}$, \&c. whence arifes $z=\frac{3}{2} a x-\frac{14}{9} x^{2}+\frac{200 x^{3}}{11 a}, 8 \mathrm{cc}=$ Area $b d \mathrm{DB}$.
43. And thus by affuming another and another point for the beginning of the Abicifs, the Area of any Curve may be exprefs'd an infinite variety of ways.
44. Alfo the Equation $\frac{a^{3}-a^{2} x}{a x+x x}=\underset{\sim}{z}$ might have been refolved into the two infinite Series $z=\frac{a^{3}}{x^{2}}-\frac{a^{4}}{x^{3}}+\frac{a^{5}}{x^{4}}, \& x c .-a+x$ - $\frac{x x}{a}+\frac{x^{3}}{a^{2}}, \delta c \mathrm{c}$. where there is found no Term divided by the fiil

Power of x. But fuch kind of Series, where the Powers of x afcend infinitely in the numerators of the one, and in the denominators of the other, are not fo proper to derive the value of z from, by Arithmetical computation, when the Species are to be changed into Numbers.
45. Hardly any thing difficult can occur to any one, who is to undertake fuch a computation in Numbers, after the value of the Area is obtain'd in Species. Yet for the morc compleat illuftration of the foregoing Doctrine, I fhall add an Example or two.
46. Let the Hyperbola AD be propofed, whofe Equation is $\sqrt{x+x x}=\dot{z}$; its Vertex being at A, and each of its Axes is equal to Unity. From what goes before, its Area $\mathrm{ADB}=\frac{2}{3} x^{\frac{3}{3}}$ $+\frac{1}{5} x^{\frac{5}{3}}-\frac{1}{2} \frac{1}{8} x^{\frac{7}{2}}+\frac{1}{2} \frac{1}{2} x^{\frac{3}{2}}-\frac{5}{9} \frac{5}{9} x^{\frac{11}{2}}$, \&cc. that is $x^{\frac{1}{2}}$ into $\frac{2}{3} x+\frac{1}{5} x^{2}-\frac{1}{2} \frac{1}{5} \cdot x^{3}+\frac{1}{7} x^{4}-\frac{5}{5} \frac{5}{0} x^{5}$,
 \&uc. which Series may be infinitely produced by multiplying the laft term continually by the fucceeding terms of this Progreffion $\frac{1.3}{25} x . \frac{-1.5}{47} x . \frac{-37}{6.9} x . \frac{-5.9}{8.11} x . \frac{-7.11}{10.15} x$. \&c. That is, the firft term $\frac{2}{3} x^{\frac{3}{2}} \times \frac{1.3}{2.5} x$ makes the fecond term $\frac{1}{5} x^{\frac{5}{2}}$: Which multiply'd by $\frac{-15}{47} x$ makes the third term - $\frac{x^{\frac{1}{2}} x^{\frac{7}{2}}}{}$: Which multiply'd by $\frac{-3.7}{6.9} x$ makes $\frac{1}{7} \frac{1}{2} x^{\frac{3}{2}}$ the fourth term ; and fo ad infinitum. Now let $A B$ be affiumed of any length, fuppofe $\frac{1}{f}$, and writing this Number for x, and its Root $\frac{1}{2}$ for $x^{\frac{1}{2}}$, and the firft term $\frac{2}{3} x^{\frac{3}{2}}$ or $\frac{2}{3} \times \frac{1}{5}$, being reduced to a decimal Fraction, it becomes $0.083333333, \& \mathrm{cc}$. This into $\frac{1.3}{25.4}$ makes 0.00625 the fecond term. This into $\frac{-15}{4.74}$ makes -0.0002790178 , \&c. the third term. And fo on for ever. But the terms, which I thus deduce by degrees, I difpofe in two Tables; the afirmative terms in one, and the nega. tive in another, and I add them up as you fee here.

62500000000000 27 I26736IIII 5135169396 144628917 4954581 190948 7963 35^{2}
16
+0.0896109885640518

- $0.000279017^{8} 571429$ 34679066051 834165027 26285354 961296 38676 1663

75
4

$$
\begin{array}{r}
0.0002825719389575 \\
+0.0896109885646518 \\
\hline 0.0893284166257043
\end{array}
$$

Then from the fum of the Afirmatives I take the fum of the negatives, and there remains 0.0893284166257043 for the quantity. of the Hyperbolic Area ADB; which was to be found.
47. Now let the Circle $A d F$ be propofed, which isexpreffed by the equation $\sqrt{x-x x}=z$; that is, whofe Diameter is unity, and from what goes before its Area $\mathrm{A} d \mathrm{~B}$ will be $\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}$ $-\frac{1}{2} 5 x^{\frac{7}{2}}-\frac{1}{7} \frac{1}{2} x^{\frac{0}{2}}$, \&xc. In which Series, fince the terms do not differ from the terms of the Se-
 ries, which above exprefs'd the Hyperbolical Area, unlefs in the Signs + and -; nothing elfe remains to be done, than to connect the fame numeral terms with other figns; that is, by fubtracting the connected fums of both the afore-mention'd tables, $0.0898935605_{3} 0193$ from the firft term doubled 0.1666666666666 , \&c. and the remainder 0.0767731061630473 will be the portion AdB of the circular Area, fuppofing AB to be a fourth part of the diameter. And hence we may obferve, that tho' the Areas of the Circle and Hyperbola are not compared in a Geometrical confideration, yet each of them is difcover'd by the fame Arithmetical computation.
43. The portion of the circle AdB being found, from thence the whole Area may be derived. For the Radius $d \mathrm{C}$ being drawn, multiply $\mathrm{B} d$, or $\frac{\mathrm{r}}{4} \sqrt{ } 3$, into BC , or $\frac{\mathrm{r}}{4}$, and half of the product $\frac{1}{3} \frac{1}{2} \sqrt{3}$, or $0.0541265^{8} 77365275$ will be the value of the Triangle $\mathcal{C} d \mathrm{~B}$; which added to the Area $\mathrm{A} d \mathrm{~B}$, there will be had the Sector $\mathrm{AC} d=0.1308906938995747$, the fextuple of which 0.78539816339744^{82} is the whole Area.
49. And hence by the way the length of the Circumference will be 3.1415926535897928 , by dividing the Area by a fourth part of the Diameter.
50. To thefe we fhall add the calculation of the Area comprehended between the Hyperbola dFI and its Afymptote CA. Let C be the Center of the Hyperbola, and putting $\mathrm{CA}=a, \mathrm{AF}=b$, and $\mathrm{AB}=\mathrm{A} b=x ;$ 'twill be $\frac{a b}{a+x}=\mathrm{BD}$, and $\frac{a b}{a-x}=b d$; whence the Area $\mathrm{AFDB}=b x-\frac{b x x}{2 a}+\frac{b \times 3}{3 a^{2}}-\frac{b x 4}{4 x^{43}}$, $\& c$. and the Area $A F d b=b x+\frac{b x^{2}}{2 a}+\frac{b x^{3}}{3 a^{2}}$ $+\frac{b x 4}{4 a^{3}}, 8 c \mathrm{c}$. and the fum $b d \mathrm{DB}=2 b x+\frac{2 b x^{3}}{3 a^{2}}$
 $+\frac{2 b x^{5}}{5{ }^{44}}+\frac{2 b x^{7}}{7 a^{6}}, \& c$. Now let us fuppofe $\mathrm{CA}=\mathrm{AF}=\mathrm{I}$, and $\mathrm{A} b$ or $\mathrm{AB}=\frac{1}{\mathrm{~T} 0}, \mathrm{C} b$ being 0.9 , and $\mathrm{CB}=\mathrm{I} . \mathrm{I}$; and fubtituting thefe. numbers for a, b, and x, the firft term of the Series becomes 0.2 , the fecond $0.0006666666,8 c$. the third 0.000004 ; and fo on, as you fee in this Table.

> 0.2000000000000000
> 6666666666666
> 40000000000 285714286 2222222 18182

154
The fum $\overline{0.200670695462151 \mathrm{II}}=$ Area $b d \mathrm{DB}$.
51. If the parts of this Area $A d$ and $A D$ be defired feparately; fubtract the leffer BA from the greater $d \mathrm{~A}$, and there will remain $\frac{b x^{2}}{a}+\frac{b x^{4}}{2 a^{3}}+\frac{b x^{6}}{3 a^{5}}+\frac{b x^{8}}{4^{7} 7}$ \&c. Where if I be wrote for a and b, and $\frac{1}{50}$ for x, the terms being reduced to decimals will ftand thus;

> 0.0100000000000000
> 500000000000
> 3333333333
> 25000000
> 200000
> 1667
> 14

The fum $0.0100503358535014=A d-A D$.
52. Now if this difference of the Areas be added to, and fubtracted from, their fum before found, half the aggregate 0.1053605156578263 will be the greater Area $A d$, and half of the remainder 0.095310179804324^{8} will be the leffer Area AD.
53. By the fame tables thofe Areas $A D$ and $A d$ will be obtain'd alfo, when $A B$ and $A b$ are fuppos'd $\frac{1}{1-\sigma}$, or $C B=1.01$, and $\mathrm{Cb}=0.99$, if the numbers are but duly transferr'd to lower places, as may be here feen.

Sum $00200006667066695=6 \mathrm{D}$.
$\frac{1}{2}$ Aggr.0.0100503358535014=Ad, and $\frac{1}{2}$ Refid. 0.009950330853168 1 $=\mathrm{AD}$.
54. And fo putting AB and $\mathrm{A} b=\frac{\mathrm{r}}{\mathrm{T}} \mathrm{\sigma} \bar{\sigma}$, or $(\mathrm{B}=1.001$, and $\mathrm{C} b=0.999$, there will be obtain'd $\mathrm{Ad}=0.0010005003335^{8} 35$, and $\mathrm{AD}=0.0009995003330835$.
55. In the fame manner (if CA and $A F=1$) putting $A B$ and $\mathrm{A} b=0.2$, or 0.02 , or 0.002 , thefe Areas will arife,
$\mathrm{Ad}=0.22314355^{1} 3142097$, and $\mathrm{AD}=0.1823215567939546$, or $\mathrm{A} d=0.0202027073175194$, and $\mathrm{AD}=0.0198026272961797$, or $\mathrm{Ad}=0.002002 \quad$ and $\mathrm{AD}=0.001$
56. From thefe Areas thus found it will be eafy to derive others, by addition and fubtraction alone. For as it is $\frac{1.2}{0.8}$ into $\frac{1.2}{0.9}=2$, the fum of the Areas 0.69314718055994 .53 belonging to the Ratio's $\frac{1.2}{0.8}$ and $\frac{1.2}{0.9}$, (that is, infifting upon the parts of the Abfcifs $1.2-08$ and $1.2-0.9$,) will be the Area $A F \& \beta, C \beta$ being $=2$, as is known. Again, fince $\frac{1.2}{08}$ into $2=3$, the fum 1.098612 .2886681097 of the Area's belonging to $\frac{12}{0.8}$ and 2 , will be the Area $A F \delta \beta, C \beta$ being 3 . Again, as it is $\frac{2 \times 2}{08}=5$, and $2 \times 5=10$, by a due addition of Areas will be obtain'd $1.6093379124341004=A F \delta \beta$, when $\mathrm{C} \beta=5$; and $2.3025^{8} 50929940457=\mathrm{AF} \delta \beta$, when $\mathrm{C} \beta=10$. And thus, fince $10 \times 10=100$, and $10 \times 100=1000$, and $\sqrt{ } 5$ $\times 10 \times 0.98=7$, and $10 \times 1.1=11$, and $\frac{1000 \times 1001}{7 \times 11}=13$, and $\frac{100 \times 0.998}{2}=499$; it is plain, that the Area $\operatorname{AF} \delta \beta$ may be found by the compofition of the Areas found before, when $\mathrm{C} \beta=100$; 1000 ;

7 ; or any other of the above-mention'd numbers, $\mathrm{AB}=\mathrm{BF}$ being ftill unity. This I was willing to infmuate, that a method might be derived from hence, very proper for the conftruction of a Canon of Logarithms, which determines the Hyperbolical Areas, (from which the Logarithms may eafily be derived,) correfponding to fo many Prime numbers, as it were by two operations only, which are not very troublefome. But whereas that Canon feems to be derivable from this fountain more commodioufly than from any other, what if I hould point out its conftruction here, to compleat the whole?
57. Firft therefore having affumed o for the Logarithm of the number 1 , and I for the Logarithm of the number 10 , as is generally done, the Logarithms of the Prime numbers 2, 3, 5, 7, II, 13, 17, 37, are to be invertigated, by dividing the Hyperbolical Areas now found by 2.3025850929940457 , which is the Area correfponding to the number 10: Or which is the fame thing, by multiplying by its reciprocal 0.4342944819032518 . Thus for Inftance, if $0.69314718,8 x c$. the Area correfponding to the number 2, were multiply'd by 0.43429, \&c. it makes 0.3010299956639812 the Logarithm of the number 2 .
58. Then the Logarithms of all the numbers in the Canon, which are made by the multiplication of thefe, are to be found by the addition of their Logarithms, as is ufual. And the void places are to be interpolated afterwards, by the help of this Theorem.
59. Let n be a Number to which a Logarithm is to be adapted, x the difference between that and the two neareft numbers equally diftant on each fide, whofe Logarithms are already found, and let d be half the difference of the Logarithms. Then the required Logarithm of the Number n will be obtain'd by adding $d+\frac{d x}{2 n}+\frac{d x^{3}}{12 n^{3}}$, \&c. to the Logarithm of the leffer number. For if the numbers are expounded by $\mathrm{C}, \mathrm{C} \beta$, and CP , the rectangle CBD or $\mathrm{C} \beta \delta=\mathrm{r}$, as before, and the Ordinates $p q$ and PQ being raifed; if n be wrote for $C \beta$, and x for βp or βP, the Area $p q Q P$ or $\frac{2 x}{n}+\frac{2 x^{3}}{3^{3}}+\frac{2 x^{5}}{5^{5} 5^{5}}$ $\& x c$. will be to the Area $p q \delta \beta$ or $\frac{x}{n}+\frac{x^{2}}{2 n^{2}}+\frac{x^{3}}{n^{n} 3}, \& c$. as the difference between the Logarithms of the extream numbers or $2 d$, to the difference between the Logarithms of the leffer and of the middle
one; which therefore will be be $\frac{\frac{d x}{n}+\frac{d x^{2}}{2^{2}}+\frac{d x^{3}}{3^{3} 3} \& c \text {. }}{\frac{x}{n}+\frac{x^{3}}{3 n^{3}}+\frac{x^{5}}{5 n^{5}} \& \mathrm{cc} \text {. that is, when the } \text {. }}$, divifion is perform'd, $d+\frac{d x}{2 n}+\frac{d x x^{3}}{12 n^{3}} \delta x c$.
60. The two firft terms of this Series $d+\frac{d x}{2 n} \mathrm{I}$ think to be accurate enough for the conftruction of a Canon of Logarithms, even tho' they were to be produced to fourteen or fifteen figures; provided the number, whofe Logarithm is to be found, be not lefs than 1000. And this can give little trouble in the calculation, becaufe x is generally an unit, or the number 2. Yet it is not neceffary to interpolate all the places by the help of this Rule. For the Logarithms of numbers which are produced by the multiplication or divifion of the number laft found, may be obtain'd by the numbers whofe Logarithms were had before, by the addition or fubtraction of their Logarithms. Moreover by the differences of the Logarithms, and by their fecond and third differences, if there be occafion, the void places may be more expeditioully fupply'd; the foregoing Rule being to be apply'd only, when the continuation of fome full places is wanted, in order to obtain thofe differences.
61. By the fame method rules may be found for the intercalation of Logarithms, when of three numbers the Logarithms of the lefier and of the middle number are given, or of the middle number and of the greater; and this although the numbers fhould not be in Arithmetical progreffion.
62. Alfo by purfuing the fteps of this method, rules might be eafily difcover'd, for the conftruction of the tables of artificial Sines and Tangents, without the affiftance of the natural Tables. But of thefe things only by the bye.
63 . Hitherto we have treated of the Quadrature of Curves, which are exprefs'd by Equations confifting of complicate terms; and that by means of their reduction to Equations, which confift of an infinite number of fimple terms. But whereas fuch Curves may fometimes be fquared by finite Equations alfo, or however may be compared with other Curves, whofe Areas in a manner may be confider'd as known; of which kind are the Conic Sections: For this reafon I thought fit to adjoin the two following catalogues or tables of Theorems, according to my promife, conftructed by the help of the 7 th and $8 t h$ aforegoing Propofitions.
64. The firft of thefe exhibits the Areas of fuch Curves as can be fquared; and the fecond contains fuch Curves, whofe Areas may be compared with the Areas of the Conic Sections. In each of there, the letters d, e, f, g, and b, denote any given quantities, x and \approx the Abfcifles of Curves, v and y parallel Ordinates, and s and t Areas, as before. The letters n and θ, annex'd to the quantity \approx, denote the number of the dimenfions of the fame z, whether it be integer or fractional, affirmative or negative. As if $n=3$, then $z^{n}=z^{3}, z^{2 n}=z^{6}, z^{-n}=z^{-3}$ or $\frac{1}{z^{3}}, z^{n+1}=z^{4}$, and $z^{n-1}=z^{2}$.
65. Moreover in the values of the Areas, for the fake of brevity, is written R inftead of this Radical $\sqrt{e+f z^{4}}$, or $\sqrt{e+f z^{4}+g z^{2 \eta}}$, and p inftead of $\sqrt{b+i z^{4}}$, by which the value of the Ordinate y is affected.
66. The frrft Table, of fome Curvilinear Areas related to Rectilinear Figures, conftructed by Prob.7.

Order of Curves.	Values of their Areas.
$d z^{n-1}=y$	$\frac{d}{n} z^{n}=t$.
II. $\quad \frac{d z^{4-1}}{e+2 f z^{4}+f z^{24}}=y$	$\frac{d z^{4}}{w c^{2}+w f z^{4}}=t$, or $\frac{-d}{n f+w f z^{4}}=t$.
$\text { III. }\left\{\left.\begin{array}{l\|l} 1 & d z^{n-1} \sqrt{e+f z^{n}}=y \\ 2 & d z^{2 n-1} \sqrt{e+f z^{n}}=y \\ 3 & d z^{3 n-r} \sqrt{e+f z^{n}}=y \\ 4 & d z^{4 n-1} \sqrt{e+f z^{n}}=y \end{array} \right\rvert\,\right.$	
	$\begin{aligned} & \frac{2 d}{n f} \mathrm{R}=t . \\ & \frac{-4 e+2 f f^{4}}{3 n f} d \mathrm{R}=t . \\ & \frac{16 e^{2}-8 f f y^{4}+6 f z^{2 \eta}}{15 f f^{3}} d \mathrm{R}=t . \\ & \frac{-966^{3}+48 e^{2} f z^{n}-36 f^{2} z^{2 n}}{1055 f^{4}}+30 f^{3} z^{3 y} \end{aligned} \mathrm{R}=t .$

67. Other things of the fame kind might have been added; but I thall now pafs on to another fort of Curves, which may be compared with the Conic Sections. And in this Table or Catalogue you have the propofed Curve reprefented by the Line QEXR, the beginning of whofe Abfcifs is A, the Abfcifs AC, the Ordinate CE, the beginning of the Area αx, and the Area defcribed $\alpha \chi \mathrm{EC}$. But the beginning of this Area, or the initial term, (which commonly either commences at the beginning of the Abfcifs A, or recedes to an infinite diftance,) is found by feeking the length of the Abfcifs A_{α}, when the value of the Area is nothing, and by erecting the perpendicular αx.

68. After the fame manner you have the Conic Section reprefented by the Line PDG, whofe Center is A, Vertex a, rectangular

Semidiameters A a and AP, the beginning of the Abfcifs A, or a, or α, the $A b f c i f s A B$, or $a B$, or αB, the Ordinate $B D$, the Tangent DT meeting AB in T, the Subtenfe aD , and the Rectangle inferibed or adforibed ABDO.
69. Therefore retaining the letters before defined, it will be $\mathrm{AC}=z, \mathrm{CE}=y, a x \mathrm{EC}=t, \mathrm{AB}$ or $\mathrm{aB}=x, \mathrm{BD}=v$, and ABDP or $\mathrm{aGDB}=s$. And befides, when two Conic Sections are required, for the determination of any Area, the Area of the latter Mall be call'd σ, the Abfcifs ξ, and the Ordinate $\boldsymbol{\Upsilon}$. Put p for $\sqrt{f f-4 e g}$.
7c. The fecond Table, of fome Curvilinear Areas, related to the Conic Sections, conftructed by the bels of Prob. 8.

7 I. Before I go on to illuftrate by Examples the Theorems that are deliver'd in thefe claffes of Curves, I think it proper to obferve,
72. I. That whereas in the Equations reprefenting Curves, I have all along fuppofed all the figns of the quantities d, e, f, g, b, and i to be affirmative; whenever it fhall happen that they are negative, they muft be changed in the fubfequent values of the Abfifs and Orninate of the Conic Section, and alfo of the Area required.
73. II: Alfo the figns of the numeral Symbols n and θ, when they are negative, muft be changed in the values of the Areas. Moreover their Signs being changed, the Theorems themfelves may acquire a new form. Thus in the 4 th Form of Table 2, the Sign of n being changed, the 3 d Theorem becomes $\frac{d}{z^{-n+1} \sqrt{e+f z^{-n}}}=y, \frac{1}{z^{-n}}$ $=x$, \&ic. that is, $\frac{d z^{3 /-1}}{\sqrt{c z^{2 n}+f x^{n}}}=y, z^{4}=x, \sqrt{f x+c x^{2}}=v, \frac{d}{n^{2}}$ into $2 x v-3^{s}=t$. And the fame is to be obferved in others.
74. III. The feries of each order, excepting the 2 d of the ift Table, may be continued each way ad infuitum. For in the Series of the 3 d and 4 th Order of Table 1, the numeral co-efficients of the initial terms, $(2,-4,16,-96,768, \& c$.$) are form'd by multi-$ plying the numbers $-2,-4,-6,-8,-10$, \&cc. continually into each other; and the co-efficients of the fublequent terms are derived from the initials in the 3 d Order, by multiplying gradually by $-\frac{3}{2},-\frac{5}{4},-\frac{7}{6},-\frac{9}{5},-\frac{1}{5}$, \&ic. or in the 4 thi Order by multiplying by $-\frac{1}{2},-\frac{3}{4},-\frac{5}{6},-\frac{7}{5},-\frac{9}{1}, \mathcal{E}$, . But the co-efficients of the denominators $\mathrm{I}, 3,15,105$, \&c. arife by multiplying the numbers $1,3,5,7,9$, \&c. gradually into each other.
75. But in the 2 d Table, the Series of the $1^{\text {tr }}, 2^{\text {d }}, 3^{\text {d }}, 4^{\text {th }}, 9^{\text {th }}$, and $10^{\text {th }}$ Orders are produced in infinitum by divifion alone. Thus having $\frac{d z^{4 i-1}}{}=y$, in the if Order, if you perform the divifion to a con-
 $\frac{\frac{d e^{3}}{\frac{1}{3}^{n-s}}}{\frac{1+\sqrt{2}}{n}}=y$. The firft three terms belong to the ift Oider of Table I, and the fourth term belongs to the ift Species of this Order. Whence it appears, that the Area is $\frac{d}{3 v f} z^{3 n}-\frac{d_{e}}{2 n f^{\prime}} z^{3 n}+\frac{d c^{2}}{i f^{3}} z^{n}$ - $\frac{e^{3}}{n f^{3}} s$; putting s for the Area of the Conic Section, whofe Abicif; is $x=2^{n}$, and Ordinate $v=\frac{d}{\frac{d}{P} \frac{1}{x}}$.

$$
-6
$$

76. But the Series of the $5^{\text {th }}$ and 6 th Orders may be infinitely continued, by the help of the two Theorems in the 5 th Order of Table 1. by a due addition or fubtraction: As alio the 7 th and 8 th Series, by means of the Theorems in the 6th Order of Table x. and the Series of the irth, by the Theorem in the roth Order of Table 1.

For inftance, if the Series of the 3 d Order of Table 2. be to be farther continued, fuppofe $\theta=-4 n$, and the x ft Theorem of the 5th Order of Table r. will become - $8 n e z^{-44-1}-5 n f z^{-3 n-1}$ into $\frac{1}{2} \sqrt{e+f z^{n}}=y \cdot \frac{\mathrm{R}^{3}}{z^{44}}=t$. But according to the 4 th Theorem of this Series to be produced, writing - $\frac{54 f}{2}$ for d, it is $-\frac{5 n}{2} f z^{-3 n-1}$ $\sqrt{e+f z^{4}}=y, \frac{1}{z^{4}}=x, \sqrt{\sqrt{x}+e x x}=v$, and $\frac{10 \int v^{3}-15 f^{2} s}{12 e}=t$. So that fubtracting the former values of y and t, there will remain $4 n e z^{-4 n-1} \sqrt{e+f z^{n}}=y, \frac{10 f_{2} 3-15 f_{s}}{12 e}-\frac{\mathrm{R}^{3}}{z^{4 n}}=t_{t}$. Thefe being multiplied by $\frac{d}{4 n e}$; and, (if you pleafe) for $\frac{\mathrm{R}^{3}}{z^{4 \eta}}$ writing $x v^{3}$, there will arife a 5 th Theorem of the Seriesto be produced, $\frac{d}{z^{4 n+x}} \sqrt{e+f z^{n}}=y, \frac{1}{z^{n}}=x$, $\sqrt{f x+e x x}=v$, and $\frac{10 d f v^{3}-15 d f^{2} s}{48 e^{e^{2}}}-\frac{d_{x \cdot i}{ }^{3}}{4 n^{e}}=t$.
77. IV. Some of thefe Orders may alfo be otherwife derived from others. As in the 2 d Table, the 5 th, 6 th, 7 th, and 19 th, from the 8th; and the 9 th from the 1oth: So that Imight have omitted them, bat that they may be of fome ufe, tho' not altogether neceffary. Yet I have onitted fome Orders, which I might have derived from the ift, and 2 d , as alfo from the 9 th and roth, becaufe they were affected by Denominators that were more complicate, and therefore can hardly be of any ufe.
78. V. If the defining Equation of any Curve is compounded of feveral Equations of different Orders, or of different Species of the fame Order, its Area muft be compounded of the correfponding Areas; taking care however, that they may be rightly connected with their proper Signs. For we muft not always add or fubtract at the fame time Ordinates to or from Ordinates, or correfponding Areas to or from correfponding Areas; but fometimes the fum of thefe, and the difference of thofe, is to be taken for a new Ordinate, or to conftitute a correfponding Area. And this muft be done, when the conftituent Areas are pofited on the contrary fide of the Ordinate. llat that the cautious Geometrician may the more readily avoid this
inconveniency, I have prefix'd their proper Signs to the feveral Values of the Areas, tho fometimes negative, as is done in the $5^{t h}$ and 7 th Order of Table 2.
79. VI. It is farther to be obferved, about the Signs of the Areas, that $+s$ denotes, either that the Area of the Conic Section, adjoining to the Abfcifs, is to be added to the other quantities in the value of t; (fee the ift Example following;) or that the Area on the other fide of the Ordinate is to be fubtracted. And on the contrary, - s denotes ambiguoully, either that the Area adjacent to the Abfcifs is to be fubtracted, or that the Area on the other fide of the Ordinate is to be added, as it may feem convenient. Alfo the Value of t, if it comes out affirmative, denotes the Area of the Curve propofed adjoining to its Abfcifs : And contrariwife, if it be negative, it reprefents the Area on the other fide of the Ordinate.
80. VII. But that this Area may be more certainly defined, we muft enquire after its Limits. And as to its Limit at the Abfcifs, at the Ordinate, and at the Perimeter of the Curve, there can be no uncertainty: But its initial Limit, or the beginning from whence its defeription commences, may obtain various pofitions. In the following Examples it is either at the beginning of the Abfcifs, or at an infinite diftance, or in the concourfe of the Curve with its Abfcifs. But it may be placed elfewhere. And wherever it is, it may be found, by feeking that length of the Abfcifs, at which the value of t becomes nothing, and there erecting an Ordinate. For the Ordinate fo raifed will be the Limit required.
81. VIII. If any part of the Area is pofited below the Abfcifs, t will denote the difference of that, and of the part above the Ab fcifs.
82. IX. Whenever the dimenfions of the terms in the values of x, v, and t, fhall afcend too high, or defcend too low, they may be reduced to a juft degree, by dividing or multiplying fo often by any given quantity, which may be fuppos'd to perform the office of Unity, as eften as thofe dimenfions fhall be either too high or too low.

83 . X. Befides the foregoing Catalogues, or Tables, we might alfo conftruct Tables of Curves related to other Curves, which may be the mof fimple in theirkind; as to $\sqrt{a+f x^{3}}=v$, or to $x \sqrt{c+f x^{3}}=v$, or to $\sqrt{e+f x^{4}}=v, \& x c$. So that we might at all times derive the Area of any propofed Curve from the fimpleft original, and know to what Curves it itands related. But now let us illutrate by Examples, what has been already delivered.
84. Example I. Let QER be a Conchoidal of fuch a kind, that the Semicircle QHA being defrribed, and AC being erected perpendicular to the Diameter AQ; if the Parallelogram QACI be compleated, the Diagonal AI be drawn, meeting the Sc -
 micircle in H , and from H the'perpendicular HE be let fall to IC; then the Point E will deferibe a Curve, whofe Area ACEQ is fought.

S5.Therefore make $\mathrm{AQ}=a, \mathrm{AC}=z, \mathrm{CE}=y$; and becaufe of the continual Proportionals AI, AQ, AH, EC, 'twill be EC or $y=\frac{a^{\hat{s}}}{a^{2}+a^{2}}$.
86. Now that this may acquire the Form of the Equations in the Tables, make $n=2$, and for z^{*} in the denominator write z^{n}, and $a^{3} z^{\frac{1}{2} y-1}$ for a^{3} or $a^{3} z_{1}^{1-1}$ in the numerator, and there will arife $y=$ $\frac{a^{\frac{3}{3} z^{\frac{1}{2}}+\frac{1}{2}}}{a^{2}+z^{n}}$ an Equation of the ift Species of the 2d Order of Table 2. and the Terms being compared, it will be $d=a^{3}, c=a^{2}$, and $f=\mathrm{I}$; fo that $\sqrt{ } \frac{a^{a^{3}}}{a^{2}+z^{2}}=x, \sqrt{a^{3}-a^{2} x^{2}}=v$, and $x v-2 s$ $=t$.
87. Now that the values found of x and v may be reduced to a juft number of dimenfions, choofe any given quantity, as a, by which, as unity, a^{3} may be multiplied once in the value of x, and in the value of v, a^{3} may be divided once, and $a^{2} x^{2}$ twice. And by this means you will obtain $\sqrt{\frac{c^{4}}{a^{2}+z^{2}}}=x, \sqrt{a^{2}-x^{2}}=v$, and $w v$ - $2 s,=t$: of which the conftraction is thus.
88. Center A, and Radius $A Q$, defcribe the Qundrantal Arch CDP; in $A C$ take $A B=A H$; rante the perpendicular $B D$ meeting that Arch in D, and draw AD. Then the double of the Sector $A D P$ will be equal to the Area fought ACEQ. For $\sqrt{ } \frac{6.4}{a^{2}-i z^{2}}=$ $(\sqrt{A D q-A B}=) B D$, or y; and $x v-2 s=2 \triangle A D B-2 A B D Q$, or $=2 \triangle A D B+2 B D P$, that is, either $=-2 Q A D$, or $=2 \mathrm{DAP}:$ Of which values the affirmative 2DAP belongs to the Area ACEQ on this fide EC, and the negative-2QAD belongs to the Area RE R extended at in, finitum beyond EC.
89. The folutions of Problems thus found may fometimes be made more elegant. Thus in the prefent cafe, drawing RH the femidiameter
midiameter of the Circle QHA , becaufe of equal Arches QH and DP , the Sector QRH is half the Sector DAP, and therefore a fourth part of the Surface ACEQ.
90. Example II. Let AGE be a Curve, which is defcribed by the Angular point E of the Norma AEF, whilat one of the Legs AE, being interminate, paffes continually through the given point A, and the other CE, of a given length, flides upon the right Line AF given in pofition. Let fall EH perpendicular to AF, and compleat the Parallelogram AHEC; and calling $\mathrm{AC}=z, \mathrm{CE}=y$, and $\mathrm{EF}=a$, becaure of HF, HE, HA continual Proportionals, it will be
 HA or $y=\frac{z^{2}}{\sqrt{a^{2}-z^{2}}}$.
91. Now that the Area AGEC may be known, fuppofe $z_{-}^{2}=z^{n}$, or $2=n$, and thence it will be $\frac{z^{\frac{3}{2}-5}}{\sqrt{a^{2}-z^{4}}}=3$.. Here fince z in the numerator is of a fracted dimenfion, deprefs the value of y by dividing by $z^{\frac{1}{2} n}$, and it will be $\frac{z^{n-x}}{\sqrt{a^{2} z^{-n}-1}}=y$, an Equation of the 2d Species of the 7 th Order of Table 2. And the terms being compared, it is $d=\mathrm{I}, e=-\mathrm{I}$, and $f=a^{2}$. So that $\approx^{2}=$ $\left(\frac{1}{z^{-1}}=\right) x^{2}, \sqrt{a^{2}-x^{2}}=v$, and $s-x v=t$. Therefore fince x and \approx are equal, and fince $\sqrt{a^{2}-x^{2}}=v$ is an Equation to a Circle, whofe Diameter is a : with the Center A, and diftance a or $E F$, let the Circle PDQ be defcribed, which CE meets in D , and let the Parallelogram ACDI be compleated; then will $\mathrm{AC}=\approx$, $\mathrm{CD}=v$, and the Area fought $\mathrm{AGEC}=s-x v=\mathrm{ACDP}$ $-\mathrm{ACDI}=\mathrm{IDP}$.
92. Example III. Let AGE be the Ciffoid belonging to the Circle ADQ, defcribed with the diameter AQ. Let DCE be drawn perpendicular to the diameter, and meeting the Curves in D and E. And na$\operatorname{ming} \mathrm{AC}=z, \mathrm{CE}=y$, and $\mathrm{AQ}=a$; becaufe of CD, CA, CE continual Proportionals, it will be CE or $y=$ $\frac{\alpha z}{\sqrt{a z-z z}}$, and dividing by z, 'tis $y=\frac{z}{\sqrt{a z}_{-1}^{-1}}$. Therefore z^{-1} $=z^{n}$, or $-1=n$, and thence $y=\frac{z^{-2 \hat{n}-1}}{\sqrt{a z^{n}-1}}$, an Equation of
 the 3 Species of the 4 th Order of Table 2. The Terms therefore being compared, 'tis $d=\mathrm{I}, e=-\mathrm{I}$, and $f=a$. Therefore $z=\frac{1}{x^{y}}=x, \sqrt{a x-x x}=v$, and $3 s-2 x v=t$. Wherefore it is $\mathrm{AC}=x, \mathrm{CD}=v$, and thence $\mathrm{ACDH}=s$; fo that $3 \mathrm{ACDH}-4 \triangle \mathrm{ADC}=3^{s}-2 x v=t=$ Area of the Ciffoid ACEGA. Or, which is the fame thing, 3 Segments ADHA $=$ Area ADEGA, or 4 Segments ADHA $=$ Area AHDEGA:
93. Example IV. Let PE be the firft Conchoid of the Ancients, defcribed from Center G, with the Afymptote AL, and diftance LE. Draw its Axis GAP, and let fall the Ordinate EC. Then calling AC $=z, \mathrm{CE}=y, \mathrm{GA}=\dot{0}$, and $\overline{\mathrm{AP}}=c$; becaufe of the Proportionals A C : CE - AL: : GC : CE, it will be CE or y $=\frac{4 z}{x} \sqrt{x^{1}-z^{2}}$.

94. Now that its Area PEC may be found from hence, the parts of the Ordinate CE are to be confider'd feparately. And if the Ordinate $C E$ is fo divided in D, that it is $C D=\sqrt{ } \overline{e^{2}-z^{2}}$, and
and $\mathrm{DE}=\frac{b}{z} \sqrt{e^{2}-z^{2}}$; CD will be the Ordinate of a Circle defcribed from Center A, and with the Radius AP. Therefore the part of the Area PDC is known, and there will remain the other part DPED to be found. Therefore fince DE, the part of the Ordinate by which it is defcribed, is equivalent to $\frac{b}{z} \sqrt{e^{2}-z^{2}}$; fuppofe $2=n$, and it becomes $\frac{b}{z} \sqrt{e^{2}-z^{n}}=\mathrm{DE}$, an Equation of the int Species of the 3 d Order of Table 2. The terms therefore being compared, it is $d=b, e=c^{2}$, and $f=-1$; and therefore $\frac{1}{\approx}=\sqrt{ } \frac{1}{z^{4}}=x, \sqrt{-1+c^{2} x^{2}}=v$, and $2 b c^{2} s-\frac{b v^{3}}{x}=t$.
95. Thefe things being found, reduce them to a juft number of dimenfions, by multiplying the terms that are too deprefs'd, and dividing thofe that are too high, by fome given Quantity. If this be done by c, there will arife $\frac{c^{2}}{z}=x, \sqrt{-c^{2}+x^{2}}=v$, and $\frac{2 b s}{c}-\frac{b v^{3}}{c x}=t$: The Conftruction of which is in this manner.
96. With the Center A, principal Vertex P, and Parameter 2AP, defcribe the Hyperbola PK. Then from the point C draw the right Line CK, that may touch the Parabola in K: And it will be, as AP to 2 AG, fo is the Area CKPC to the Area required DPED.
97. Example 5. Let the Norma GFE fo revolve about the Pole G, as that its angular point F may continually flide upon the right Line AF given in pofition; then conceive the Curve PE to be defcribed by any Point E in the other Leg EF. Now that the Area of this Curve may be found, let fall GA and EH perpendicular to the right Line AF , and compleating the $\mathrm{Pa}-$ rallelogram AHEC, call AC $=z, \mathrm{CE}=y, \mathrm{AG}=b$, and $\mathrm{EF}=c$; and becaure of the Proportionals HF : EH :: AG : AF , we fhall have $\mathrm{AF}=$ $\frac{b z}{\sqrt{a-z z}}$. Therefore CE or y
 $=\frac{b z}{\sqrt{c^{2}-x^{2}}}-\sqrt{c^{2}-z^{2}}$. But whereas $\sqrt{c c-z z}$ is the Ordinate of a Circle defcribed with the Semidiameter c; about the Center A
let fuch a Circle PDQ be defcribed, which CE produced meets in D ; then it will be $\mathrm{DE}=\frac{b z}{v^{\frac{2}{2}-z^{2}}}$; By the help of which Equation there remains the Area PDEP or DERQ to be determin'd. Suppofe therefore $n=2$, and $\theta=b$, and it will be $\mathrm{DE}=\frac{b_{2 \mu-1}^{y}}{\sqrt{a-A^{\eta}}}$, an Equation of the If Species of the 4 th Order of Table 1 . And the Terms being compared, it will be $b=d, c c=e$, and $-\mathrm{I}=f$; fo that $-b \sqrt{c c-z z}=-b \mathrm{R}=t$.
98. Now as the value of t is negative, and therefore the Area reprefented by t lies beyond the Line DE ; that its initial Limit may be found, feek for that length of z, at which t becomes nothing, and you will find it to be c. Therefore continue $A C$ to Q, that it may be $A Q=c$, and erect the Ordinate $Q R$; and DQRED will be the Area whofe value now found is $-b \sqrt{ } c c-z z$.
99. If you hould defire to know the quantity of the Area PDE, pofited at the Abfcifs AC, and co-extended with it, without knowing the Limit QR, you may thus determine it.
100. From the Value which t obtains at the length of the Ab fcifs AC, fubtract its value at the beginning of the Abfcifs; that is, from - $b \sqrt{c c \quad z z}$ fubtrast - $b c$, and there will arife the defired quantity $b c-b \sqrt{c-z z}$. Therefore compleat the Parallelogram PAGK, and let fall DM perpendicular to AP, which meets GK in M; and the Parallelogram PKML will be equal to the Area PDE.

10I. Whenever the Equation defining the nature of the Curve cannot be found in the Tables, nor can be reduced to fimpler terms by divifion, nor by any other means; it muft be transform'd into other Equations of Curves related to it, in the manner fhewn in Prob. 8. till at laft one is produced, whofe Area may be known by the Tables. And when all endeavours are ufed, and yet no fuch can be found, it may be certainly concluded, that the Curve propofed cannot be compared, either with rectilinear Figures, or with the Conic Sections.
102. In the fame manner when mechanical Curves are concern'd, they muft firft be transform'd into equal Geometrical Figures, as is fhewn in the fame Prob. 8. and then the Areas of fuch Geometrical Curves are to be found from the Tables. Of this matter take the following Example.
103. Example 6. Let it be propofed to determine the Area of the Figure of the Arches of any Conic Section, when they ate made Ordinates on their Right Sines. As let A be the Center of the Conic Section, $A Q$ and $A R$ the Semiaxes, CD the Ordinate to the Axis AR , and PD a Perpendicular at the point D. Alfo let AE be the faid mechanical Curve meeting CD in E ; and from its nature before defined, CE will be equal to the Arch QD. Therefore the A rea AEC is fought, or com-
 pleating the parallelogram ACEF, the excefs AEF is required. To which purpofe let a be the Latus rectum of the Conic Section, and b its Latus tranfverfum, or $2 A Q$. Alfo let $A C=z$, and $C D=y$; then it will be $\sqrt{\frac{1}{4} b b+\frac{b}{a} z z}=y$, an Equation to a Conic Section, as is known. Alfo $\mathrm{PC}=\frac{b}{a} \approx$, and thence $\mathrm{PD}=\sqrt{\frac{1}{4} b b+\frac{b b+a b}{a a} z z}$. 104. Now fince the fluxion of the Arch QD is to the fluxion of the Abfcifs AC , as PD to CD ; if the fluxion of the Abfcifs be fuppos'd I, the Fluxion of the Arch QD, or of the Ordinate CE, will be $\sqrt{\frac{3}{4} b b+\frac{b b+a b}{a a} z z} \frac{1}{4} b b+\frac{b}{a} z z \quad$. Draw this into FE, or z, and there will arife $z \sqrt{\frac{1}{4} b b+\frac{b b+a b}{a a} z z}$ for the fluxion of the Area AEF. If therefore in the Ordinate $C D$ you take $C G=z$ $\sqrt{\frac{1}{4} b b+\frac{b b+a b}{4} b z+\frac{b}{4} z z}$, the Area AGC, which is defcribed by CG moving upon $A C$, will be equal to the Area $A E F$, and the Curve Q ${ }^{2}$ AG

116

AG will be a Geometrical Curve. Therefore the Area AGC is fought. To this purpofe let z^{4} be fubstituted for z^{2} in the laft E.quation, and it becomes $z^{n-x} \sqrt{\frac{\frac{1}{4} b b+\frac{b b+a b}{a a}}{\frac{1}{4}} b b+\frac{b}{a} z^{4}}=C G$, an Equa:tion of the 2 d Species of the 1 rth Order of Table 2. And from a comparifon of terms it is $d=\mathrm{I}, e=\frac{1}{4} b b=g, f=\frac{b b+a b}{a a}$, and: $b=\frac{b}{a} ;$ fo that $\sqrt{\frac{1}{4} b b+\frac{b}{a} z z}=x, \sqrt{-\frac{b_{3}}{4 a}+\frac{a+b}{a} x x}=v$, and ${ }_{\frac{a}{b}}^{a}=t$. That is, $\mathrm{CD}=x, \mathrm{DP}=v$, and $\frac{a}{b} s=t$. And this is the Conftruction of what is now found.
105. At Q erect $Q K$ perpendicular and equal to $Q A$, and thro the point D draw HI parallel to it, but equal to DP. And the Line KI, at which HI is terminated, will be a Conic Section, and the comprehended Area HIKQ will be to the Area fought AEF, as b to a, or as PC to AC.
106. Here obferve, that if you change the fign of b, the Conic Section, to whofe Arch the right Line CE is equal, will become an Ellipfis; and befides, if you make $b=-a$, the Ellipfis becomes a Circle. And in this cafe the line KI becomes a right line parallel to $A Q$.
107. After the Area of any Curve has been thus found and conftructed, we fhould confider about the demonftration of the confruction; that laying afide all Algebraical calculation, as much as may be, the Theorem may be adorn'd, and made elegant, fo as to become fit for publick view. And there is a general method of demonftrating, which I fhall endeavour to illuftrate by the following Examples.

Demonftration of the Confruction in Example 5:

108. In the Arch PQ take a point d indefinitely near: to D, (Figure P. 113.) and draw de and $d m$ parallel to DE and DM, meeting DM and AP in p and l. Then will. DEed be the moment of the Area PDEP, and LMml will be the moment of the Area LMKP. Draw the femidiameter AD, and conceive the indefinitely, fmall arch $D d$ to be as it were a right line, and the triangles. $\mathrm{D} p d$ and ALD will be like, and therefore $\mathrm{D} p: p d:: \mathrm{AL}: \mathrm{LD}$. But it is HF : EH :: AG : AF ; that is, AL:LD :: ML:DE; and therefore $\mathrm{D} p: p d:: \mathrm{ML}: \mathrm{DE}$. Wherefore $\mathrm{D} p \times \mathrm{DE}=p d \times \mathrm{ML}$.

That is, the moment DEed is equal to the moment LMml. And fince this is demonftrated indeterminately of any contemporaneous moments whatever, it is plain, that all the moments of the Area PDEP are equal to all the contemporaneous moments of the Area PLMK, and therefore the whole Areas compofed of thofe moments. are equal to each other. Q.E. D.

Demonftration of the Conftruction in Example 3.

109. Let DE ed be the momentum of the fuperficies AHDE , and $\mathrm{A} d \mathrm{DA}$ be the contemporary moment of the Segment ADH. Draw the femidiameter DK , and let de meet AK in c; and it is $\mathrm{C} c: \mathrm{D} d:: \mathrm{CD}: \mathrm{DK}$. Befides it is DC: QA (2DK) :: AC : DE. And therefore $\mathrm{C} c: 2 \mathrm{D} d:: \mathrm{DC}: 2 \mathrm{DK}::$ $\mathrm{AC}: \mathrm{DE}$, and $\mathrm{C} c \times \mathrm{DE}=$ ${ }_{2} \mathrm{D} d \times \mathrm{AC}$. Now to the moment of the periphery $\mathrm{D} d$ produced, that is, to the tangent of the Circle, let fall the perpendicular AI, and AI will be equal to AC. So that
 $2 \mathrm{D} d \times \mathrm{AC}=2 \mathrm{D} d \times \mathrm{AI}=4$ Triangles $\mathrm{AD} d$. So that: 4 Triangles $\mathrm{AD} d=\mathrm{C} c \times \mathrm{DE}=$ moment DEed. Therefore every moment of the fpace AHDE is quadruple of the contemporary moment of the Segment ADH, and therefore that whole fpace is quadruple of the whole Segment. Q.E.D.

Demonfiration of the Comfruction in Example 4.

110. Draw ce parallel to CE, and at an indefinitely fmall diftance from it, and the tangent of the Hyperbola $c k$, and let fall KM perpendicular to AP. Now from the nature of the Hyperbola it will be $A C$: $A P$:: $A P: A M$, and therefore $A G q$: $\mathrm{CLq}:: \mathrm{AC} q: \mathrm{LEq}\left(\right.$ or $\left.\mathrm{AP}_{q}\right)::$ $\mathrm{AP} q: \mathrm{AM} q$; and divifim, AG_{1} : $\mathrm{ALq}(\mathrm{DEq}):: \mathrm{APq}: \mathrm{AMq}-$ $\mathrm{APq}(\mathrm{MK} q)$; And inversè, AG : AP :: DE : MK. But the little Area DEed is to the Tri-
 angle $\mathrm{CK} c$, as the altitude DE is to half the altitude KM ; that is, as $A G$ to $\frac{1}{2}$ AP. Wherefore all the moments of the Space PDE are to all the contemporaneous moments of the: Space PKC, as AG to $\frac{1}{2}$ AP. And therefore thofe whole Spaces are in the fame ratio. QE.D.

Demonftration of the Conffruction in Example 6.

111. Draw $c d$ parallel and infinitely near to CD, (Fig. in $\dot{\mathrm{p}} .115$.) meeting the Curve AE in e, and draw bi and $f e$ meeting $\mathrm{D}=$ in p and q. Then by the Hypothefis $\mathrm{D} d=\mathrm{E} q$, and from the fimilitude of the Triangles $\mathrm{D} d p$ and DCP , it will be $\mathrm{D} p:(\mathrm{D} d)$ $\mathrm{E} q::(\mathrm{P}:(\mathrm{PD}) \mathrm{HI}$, fo that $\mathrm{D} p \times \mathrm{HI}=\mathrm{E} q \times \mathrm{CP}$; and thence $\mathrm{D} p \times \mathrm{HI}$ (the moment HIib): $\mathrm{E} q \times \mathrm{AC}$ (the moment EFfe) :: $\mathrm{E} q \times \mathrm{CP}: \mathrm{E} q \times \mathrm{AC}:: \mathrm{CP}: \mathrm{AC}$. Wherefore fince PC and AC are in the given ratio of the latus traniverfum to the latus rectum of the Conic Section QD, and fince the moments HIib and EFfe of the Areas HIKQ and AEF are in that ratio, the Areas themfelves will be in the fame ratio. Q.E.D.
112. In this kind of demonftrations it is to be obferved, that I affume fuch quantities for equal, whofe ratio is that of equality : And that is to be efteem'd a ratio of equality, which differs lefs from equality than by any unequal ratio that can be affign'd. Thus in the laft demonftration I fuppos'd the rectangle $\mathrm{E} q \times \mathrm{AC}$, or $\mathrm{FE} q f$, to be equal to the fpace $\mathrm{FE} e f$, becaufe (by reafon of the difference Eqe infinitely lefs than them, or nothing in comparifon of them,) they
they have not a ratio of inequality. And for the fame reafon I made $\mathrm{DP} \times \mathrm{HI}=\mathrm{HI} i b$; and fo in others.

I13. I have here made ufe of this method of proving the Areas of Curves to be equal, or to have a given ratio, by the equality, or by the given ratio, of their moments; becaufe it has an affinity to the ufual methods in thefe matters. But that feems more natural which depends upon the generation of Superficies, by Motion or Fluxion. Thus if the Conftuction in Example 2. was to be demon trated: From the nature of the Circle, the fluxion of the right line ID (Fig. p.in r.) is to the fluxion of the right line IP, as AI to ID ; and it is AI : ID :: ID : CE, from the nature of the Curve
 the fluxion of the Area PDI. And therefore thofe Areas, being generated by equal fluxion, muft be equal. Q. E. D.
114. For the fake of farther illuftration, I hall add the demonftration of the Conftruction, by which the Area of the Ciffoid is determin'd, in Example 3. Let the lines mark'd with points in the fcheme be expunged; draw the Chord DQ , and the Afymptote QR of the Ciffoid. Then, from the nature of the Circle, it is $\mathrm{DQ} q=\mathrm{AQ} \times \mathrm{CQ}$, and thence (by Prob. I.) $2 \mathrm{DQ} x$ Fluxion of $\mathrm{DQ}=\mathrm{AQ} \times \mathrm{C} \dot{\overline{\mathrm{Q}}}$. And therefore $A Q: D Q:=$ $2 \dot{\overline{\mathrm{DQ}}}: \dot{\overline{\mathrm{C}}}$. Alfo from the nature of the Ciffoid it is ED : $\mathrm{AD}:: \mathrm{AQ}: \mathrm{DQ}$. Therefore $E D: A D:: 2 \overline{\overline{\mathrm{Q}}}: \dot{\overline{\mathrm{CQ}}}$, and $\mathrm{ED} \times \stackrel{\dot{\mathrm{CQ}}}{=}=\mathrm{AD} \times 2 \mathrm{D} \dot{\overline{\mathrm{D}}}$, or $4 \times \frac{1}{2} \mathrm{AD} \times \overline{\mathrm{D}}$. Now fince DQ is perpendicular at the end of $\hat{A D}$, revolving about
 A ; and $\frac{1}{2} \mathrm{AD} \times \stackrel{\dot{\mathrm{Q}} \mathrm{D}}{\mathrm{D}}=$ to the fluxion generating the Area ADOQ ; its quadruple alfo $\mathrm{ED} \times \dot{\overline{\mathrm{CQ}}}=$ fluxion generating the Ciffoidal Area QREDO. Wherefore that Area QREDO infinitely long, is generated quadruple of the other ADOQ. Q.E.D.

SCHOLIUM.
115. By the foregoing Tables not only the Areas of Curves, but quantities of any other kind, that are generated by an analogous way of flowing, may be derived from their Fluxions, and that by the affiftance of this Theorem: That a quantity of any kind is to an unit of the fame kind, as the Area of a Curve is to a fuperficial unity; if fo be that the fluxion generating that quantity be to an unit of its kind, as the fluxion generating the Area is to an unit of its kind alfo; that is, as the right Line moving perpendicularly upon the Abrcifs (or the Ordinate) by which the Area is defcribed, to a linear Unit. Wherefore if any fluxion whatever is expounded by fuch a moving Ordinate, the quantity generated by that fluxion will be expounded by the Area defcribed by fuch Ordinate; or if the Fluxion be expounded by the fame Algebraic terms as the Ordinate, the generated quantity will be expounded by the fame as the defcribed Area. Therefore the Equation, which exhibits a Fluxion of any kind, is to be fought for in the firft Column of the Tables, and the value of t in the laft Column will how the generated Quantity.
116. As if $\sqrt{1+\frac{1 z}{4 a}}$ exhibited a Fluxion of any kind, make it equal to y, and that it may be reduced to the form of the Equations in the Tables, fubftitute z^{y} for z, and it will be $z^{y-x} \sqrt{1+\frac{9}{4 a}} z^{n}$ $=y$, an Equation of the firft Species of the 3 d Order of Table 1 . And comparing the terms, it will be $d=\mathrm{I}, e=\mathrm{I}, f=\frac{9}{4 a}$, and thence $\frac{8 a+18 z}{27} \sqrt{\sqrt{1+\frac{9 z}{4 a}}}=\frac{2 d}{3 n f} \mathrm{R}^{3}=t$. Therefore it is the quantity $\frac{8 a+18 z}{27} \sqrt{1+\frac{9 z}{4 a}}$ which is generated by the Fluxion $\sqrt{1+\frac{9 z}{4 a}}$.
117. And thus if $\sqrt{1+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}}$ reprefents a Fluxion, by a due reduction, (or by extracting $z^{\frac{2}{3}}$ out of the radical, and writing: z^{n} for $z^{-\frac{2}{3}}$) there will be had $\frac{1}{z^{n+1}} \sqrt{z^{n}+\frac{16}{9 a^{\frac{2}{3}}}}=y$, an Equation of the 2d Species of the 5 th Order of Table 2. Then comparing the terms,
terms, it is $d=\mathrm{I}, e=\frac{16}{9^{\frac{2}{3}}}$, and $f=\mathrm{I}$. So that $z^{\frac{2}{3}}=\frac{2}{x^{4}}=x x$, $\sqrt{\mathrm{I}+\frac{16 x x}{9 a^{\frac{2}{3}}}}=v$, and $\frac{3}{2} s=\frac{-2 d}{n} s=t$. Which being found, the quantity generated by the fluxion $\sqrt{ }+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}$ will be known, by making it to be to an Unit of its own kind, as the Area $\frac{3}{2} s$ is to fuperficial unity; or which comes to the fame, by fuppofing the quantity t no longer to reprefent a Superficies, but a quantity of another kind, which is to an unit of its own kind, as that fuperficies is to fuperficial unity.
118. Thus fuppofing $\sqrt{1+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}}$ to reprefent a linear Fluxion, I imagine t no longer to fignify a Superficies, but a Line; that Line, for inftance, which is to a linear unit, as the Area which (according to the Tables) is reprefented by t, is to a fuperficial unit, or that which is produced by applying that Area to a linear unit. 'On which account, if that linear unit be made e, the length generated by the foregoing fluxion will be $\frac{35}{2 e}$. And upon this foundation thofe 'Tables may be apply'd to the determining the. Lengths of Curve-lines, the Contents of their Solids, and any other quantities whatever, as well as the Areas of Curves.

Of Queftions that are related bereto.

I. To approximate to the Areas of Curves mechanically.

IIg. The method is this, that the values of two or more rightlined Figures may be fo compounded together, that they may very nearly conftitute the value of the Curvilinear Area required.
120. Thus for the Circle AFD which is denoted by the Equation $x-x x=z z$, having found the value of the Area AFDB, viz. $\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{2}{ }^{\frac{1}{5}} x^{\frac{7}{3}}$ $\frac{1}{5} \frac{1}{2} x^{\frac{0}{2}}, \& \mathrm{c}$. the values of fome Rectangles are to be fought, fuch is the value $x \sqrt{x-x x}$, or $x^{\frac{3}{2}}$ - $\frac{1}{2} z^{\frac{3}{2}}-\frac{1}{8} x^{\frac{3}{2}}-\frac{1}{1}{ }^{2} x^{2}$, \&c. of the rectangle $\mathrm{BD} \times \mathrm{AB}$, and $x \sqrt{x}$, or $x^{\frac{3}{2}}$, the value of $\mathrm{AD} \times$ $A B$. Then thefe values are to be multiply'd by
 any different letters, that ftand for numbers indefinitely, and then
to be added together, and the terms of the fum are to be compared with the correfponding terms of the value of the Area AFDB, that as far as is poffible they may become equal. As if thofe Parallelograms were multiply'd by e and f, the fum would be $e x^{\frac{3}{2}}-\frac{1}{2} e x^{\frac{5}{2}}$

- $\frac{7}{8} e x^{\frac{3}{3}}$, \&xc. the terms of which being compared with thefe terms $\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{2} \frac{1}{6} x^{\frac{7}{2}}, \& c$. there arifes $e+f=\frac{1}{3}$, and $-\frac{1}{3} e=-\frac{1}{5}$, or $e=\frac{2}{5}$, and $f=\frac{2}{3}-e=\frac{4}{55}$. So that $\frac{2}{3} \mathrm{BD} \times \mathrm{AB}+{ }_{\mathrm{T}_{5}^{4}} \mathrm{AD} \times$ $\mathrm{AB}=$ Area AFDB very nearly. For ${ }_{3}^{3} \mathrm{BD} \times \mathrm{AB}+\frac{4}{53} \mathrm{AD} \times \mathrm{AB}$ is equivalent to $-\frac{1}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{2} 0 x^{\frac{7}{2}}-\frac{1}{4} 0 x^{\frac{9}{2}}$, \&c. which being fubtracted from the Area AFDB, leaves the error only $\frac{\frac{1}{5} 0}{} x^{\frac{2}{2}}+\frac{1}{50} x^{\frac{2}{2}}$, \&c.

12 I. Thus if $A B$ were bifected in E, the value of the rectangle $\mathrm{AB} \times \mathrm{DE}$ will be $x \sqrt{x-\frac{3}{4} x x}$, or $x^{\frac{3}{2}}-\frac{3}{8} x^{\frac{5}{2}}$ $\frac{9}{128} x^{\frac{7}{2}}-\frac{27}{1024} x^{\frac{0}{2}} ; \& c$. And this compared with the rectangle $A D \times A B$, gives $\frac{8 D E+2 A D}{15}$ into $A B=$ Area $A F D B$, the error being only $\frac{1}{560} x^{\frac{3}{2}}+\frac{1}{5760} x^{\frac{5}{2}}, \& \mathrm{c}$. which is always lefs than Ts.0 part of the whole Area, even tho' AFDB
 were a quadrant of a. Circle. But this Theorem may be thus propounded. As 3 to 2 , fo is the rectangle AB into DE , added to a fifth part of the difference between $A D$ and $D E$, to the Area AFDB, very nearly.
122. And thus by compounding two rectangles $\mathrm{AB} \times \mathrm{ED}$ and $\mathrm{AB} \times \mathrm{BD}$, or all the three rectangles together, or by taking in ftill more rectangles, other Rules may be invented, which will be fo much the more exact, as there are more Rectangles made ufe of. And the fame is to be underftood of the Area of the Hyperbola, or of any other Curves. Nay, by one only rectangle the Area may often be very commodioully exhibited, as in the foregoing Circle, by taking BE to AB as $\sqrt{ }$ Io to 5 , the rectangle $\mathrm{AB} \times \mathrm{ED}$ will be to the Area AFDB , as 3 to 2 , the error being only $T^{\frac{x}{9}} 3^{x^{\frac{7}{2}}}+$ $\overline{-}^{\frac{1}{2} \frac{8}{5} \frac{8}{0} x^{\frac{0}{2}} ; \& c \text {. }}$
II. The Area being given, to determine the Abfifs and Ordinate.
123. When the Area is exprefs'd by a finite Equation, there can be no difficulty: But when it is exprefs'd by an infintte Series, the affected root is to be extracted, which denotes the Abfifs. So for
the Hyperbola, defined by the Equation $\frac{a b}{a+x}=\dot{z}$, after we have found $z=b x-\frac{b x^{2}}{2 a}+\frac{b x^{3}}{3 a^{2}}-\frac{b x^{4}}{4^{3}}, \delta z c$. that from the given Area the Abfcifs x may be known, extract the affected Root, and there will arife $x=\frac{z}{6}+\frac{z^{2}}{2 a^{2} b^{2}}+\frac{z^{3}}{6 a^{2} b^{3}}+\frac{z 4}{24^{334}}+\frac{z^{5}}{96 a^{43}} ; \delta c$. And moreover, if the Ordinate \dot{z} were required, divide $a b$ by $a+x$, that is, by $a+\frac{z}{b}+\frac{z^{2}}{2 a b^{2}}+\frac{x^{3}}{6 a^{2} b^{3}}, \& c$. and there will arife $\dot{z}=b$ -$\frac{z}{a}-\frac{z^{2}}{2 a^{2 b}}-\frac{z^{3}}{6 a^{3} b^{2}}-\frac{z^{4}}{24 a^{4} b^{3}}, \& c c$.
124. Thus as to the Ellipfis which is exprefs'd by the Equation $a x-\frac{a}{c} x x=\dot{z} \dot{z}$, after the Area is found $z=\frac{a}{3} a^{\frac{1}{2}} x^{\frac{3}{2}}-\frac{a^{\frac{1}{2}} x^{\frac{5}{2}}}{5^{c}}-$ $\frac{a^{\frac{1}{2} \frac{7}{2}}}{28 c^{\frac{7}{2}}}-\frac{a^{\frac{1}{2}} x^{\frac{0}{2}}}{726^{3}}$, \&c. write v^{3} for $\frac{3 z}{2 a^{\frac{1}{2}}}$, and t for $x^{\frac{1}{2}}$, and it becomes $\nu^{3}=t^{3}-\frac{3 t^{5}}{10 c}-\frac{3^{7}}{56 c^{2}}-\frac{t^{9}}{4^{8 \cdot 3}}, \&<c$. and extracting the root $t=v+$ $\frac{v^{3}}{10 c}+\frac{81 v^{5}}{1400 c^{2}}+\frac{1171 v^{7}}{25200 c^{3}}, \delta c$ c. whofe fquare $v^{2}+\frac{v 4}{5^{4}}+\frac{22 v^{6}}{175 c^{2}}+\frac{823 \tau^{8}}{7875^{33}}$, $\& c$. is equal to x. And this value being fubetituted inftead of x in the Equation $a x-\frac{a}{c} x x=\dot{z} \dot{z}$, and the root being extracted, there arifes $\dot{z}=a^{\frac{1}{2}} v-\frac{2 a^{\frac{1}{2}} v^{3}}{5^{6}}-\frac{38 a^{\frac{1}{2}} v^{5}}{175^{2}}-\frac{407 a^{\frac{1}{2}} v^{7}}{225 \sigma^{3}}, \$ 8 c$. So that from z, the given Area, and thence v or $\sqrt{3}_{2 a^{\frac{1}{2}}}^{\frac{3 z}{3}}$, the Abfcifs x will be given, and the Ordinate \dot{z}. All which things may be accommodated to the Hyperbola, if only the fign of the quantity c be changed, wherever it is found of odd dimenfions.

$$
R=
$$

PR OB. X.

To find as many Curves as we pleafe, whole Lengths may be exprefs'd by finite Equations.
I. The following pofitions prepare the way for the folution of this Problem.
2. I. If the right Line $D C$, ftanding perpendicularly upon any. Curve AD, be conceived thus to move, all its points $G, g, r, \& x c$. will defcribe other Curves, which are equidiftant, and perpendicular to that line: As GK, gk, rs, \&c.
3. II. If that right Line is continued indefinitely each way, its extremities will move contrary ways, and therefore there will be a Point between, which will have no motion, but may therefore be call'd the Center of Motion. This Point will be the fame as the Center of Curvature, which the Curve $A D$ hath at the point D, as is mention'd before. Let that point be C.
4. III. If we fuppofe the line AD not to be circular, but unequably curved, fun-
 pore more curved towards δ, and left toward Δ; that Center will continually change its place, approaching nearer to the parts more curved, as in K , and going farther off at the parts lees curved, as in k, and by that means will defcribe forme line, as $\mathrm{KC} k$.
5. IV. The right Line DC will continually touch the line defcribed by the Center of Curvature. For if the Point D of this line moves towards δ, its point G, which in the mean time paffes to K , and is fituate on the fame fide of the Center C , will move the fame way, by pofition 2. Again, if the fame point D moves towards Δ, the point g, which in the mean time paffes to k, and is fituate on the contrary fide of the Center C , will move the contray way, that is, the fame way that G moved in the former cafe, while it pafs'd to K . Wherefore K and k lie on the fame fide of the right Line DC . But as K and k are taken indefinitely for any points,
points, it is plain that the whole Curve lies on the fame fide of the right line DC, and therefore is not cut, but only touch'd by it.
6. Here it is fuppos'd, that the line $\delta \mathrm{D} \Delta$ is continually more curved towards δ, and lefs towards Δ; for if its greateft or leaft Curvature is in D, then the right line DC will cut the Curve KC ; but yet in an angle that is lefs than any right-lined angle, which is the fame thing as if it were faid to touch it. Nay, the point C in this cafe is the Limit, or Cufpid, at which the two parts of the Curve, finifhing in the moft oblique concourfe, touch each other; and therefore may more juftly be faid to be touch'd, than to be cut, by the right line DC, which divides the Augle of contact.
7. V. The right Line CG is equal to the Curve CK. For conceive all the points $r, 2 r, 3 r, 4 r, \& c$. of that right Line to defcribe the arches of Curves $r s, 2 r 2 s, 3 r 3 s, \& c$. in the mean time that they approach to the Curve CK, by the motion of that right line; and fince thofe arches, (by pofition 1.) are perpendicular to the right lines that touch the Curve CK, (by pofition 4.) it follows that they will be alfo perpendicular to that Curve. Wherefore the parts of the line CK, intercepted between thofe arches, which by reafon of their infinite fmallnefs may be confider'd as right lines, are equal to the intervals of the fame arches ; that is, (by pofition I.) are equal to fo many parts of the right line CG. And equals being added to equals, the whole Line CK will be equal to the whole Line CG.
8. The fame thing would appear by conceiving, that every part of the right Line CG, as it moves along, will apply itfelf fucceffively to every part of the Curve CK , and thereby will meafure them ; juft as the Circumference of a wheel, as it moves forward by revolving upon a Plain, will meafure the diftance that the point of Contact continuaily defcribes.
9. And hence it appears, that the Problem may be refolved, by affiuming any Curve at pleafure $\mathrm{A} \delta \mathrm{D} \Delta$, and thence by determining the other Curve KCk , in which the Center of Curvature of the afiumed Curve is always found. Therefore letting fall the perpendiculars $D B$ and $C L$, to a right Line $A B$ given in pofition, and in $A B$ taking any point A, and calling $A B=x$ and $B D=y$; to define the Curve AD let any relation be affumed between x and y, and then by Prob 5. the point C may be found, by which may be determined both the Curve KC , and its Length GC.
io. Example. Let $a x=y y$ be the Equation to the Curve, which therefore will be the Apollonian Parabola. And, by Prob. 5. will be found $\mathrm{AL}=\frac{1}{2} a+3 x, \mathrm{CL}=$ $\frac{4^{3}}{a a}$, and $\mathrm{DC}=\frac{a+4 x}{a} \sqrt{\frac{3 x}{4} a a+a x}$. Which being obtain'd, the Curve KC is determin'd by AL and LC, and its Length by DC. For as we are at liberty to affume the points K and C an where in the Curve KC, let us fuppofe K to be the Center of Curvature of the Parabola at its Vertex; and putting therefore $A B$ and $B D$, or x and y, to be nothing, it will be $D C=\frac{1}{2} a$. And this is the Length AK, or DG, which being fubtracted from the former indefinite value of
 DC , leaves GC or $\mathrm{KC}=\frac{a+4 x}{a} \sqrt{\frac{1}{4} a a+a x}-\frac{x}{2} a$.
II. Now if you defire to know what Curve this is, and what is its Length, without any relation to the Parabola; call $\mathrm{KL}=z$, and $\mathrm{LC}=v$, and it will be $z=\mathrm{AL}-\frac{1}{2} a=3^{x}$, or $\frac{1}{3} z=x$, and $\frac{a z}{3}=a x=y y$. Therefore $4 \sqrt{ } \frac{z^{3}}{27 a}=\frac{4 y^{3}}{a a}=\mathrm{CL}=v$, or $\frac{16 z^{3}}{27 a}=$ v^{2}; which fhews the Curve KC to be a Parabola of the fecond kind. And for its Length there arifes $\frac{3 a+4 z}{3^{a}} \sqrt{\frac{1}{4} a a+\frac{1}{3} a z}-\frac{1}{2} a$, by writing $\frac{1}{3} z$ for x in the value of CG.
12. The Problem alfo may be refolved by taking an Equation, which fhall exprefs the relation between $A P$ and $P D$, fuppofing P to be the interfection of the Abrcifs and Perpendicular. For calling $\mathrm{AP}=x$, and $\mathrm{PD}=y$, conceive CPD to move an infinitely fmall face, fuppofe to the place Cpd , and in CD and Cd taking $\mathrm{C} \Delta$ and $\mathrm{C} \delta$ both of the fame given length, fuppofe $=1$, and to CL let fall the perpendiculars Δg and $\delta \gamma$, of which Δg, (which call $=z$) may meet $\mathrm{C} d$ in f. Then compleat the Parallelogram $g_{\gamma} s e$, and making
 \dot{x}, \dot{y}, and \dot{z} the fluxions of the quantities x, y, and z, as before
it will be $\Delta e: \Delta f:: \overline{\left.\Delta e\right|^{2}}: \overline{\Delta \delta}{ }^{2}:: \overline{\left.\mathrm{Cg}\right|^{2}}: \overline{\left.\mathrm{C} \Delta\right|^{2}}:: \frac{\overline{\mathrm{C} \mid}}{}{ }^{\mathrm{C} \mathrm{\Delta}}: \mathrm{C} \Delta$. And $\Delta f: \mathrm{P} p:: \mathrm{C} \Delta: \mathrm{CP}$. Then ex aquo, $\Delta e: \mathrm{P} p: \frac{\overline{\left.\mathrm{cg}\right|^{2}}}{\mathrm{c} \Delta}: \mathrm{CP}$. But $\mathrm{P} p$ is the moment of the Abrcifs AP, by the acceffion of which it becomes $\mathrm{A} p$; and Δe is the contemporaneous moment of the perpendicular Δg, by the decreafe of which it becomes $\delta \gamma$. Therefore Δe and $\mathrm{P} p$ are as the fluxions of the lines $\Delta g(z)$ and $\mathrm{AP}(x)$, that is, as \dot{z} and \dot{x}. Wherefore $\dot{z}: \dot{x}:: \frac{|\overline{\mathrm{Cg}}|^{\dot{C}}}{}: \mathrm{CP}$. And fince it is $\overline{\mathrm{Cg}}{ }^{2}=\overline{\left.\mathrm{C} \Delta\right|^{2}}-{\left.\overline{\Delta g}\right|^{2}}^{2}=\mathrm{I}-z z$, and $\mathrm{C} \Delta=\mathrm{I}$; it will be $\mathrm{CP}=\frac{\dot{x}-\dot{x} z^{2}}{\dot{z}}$. Moreover fince we may affume any one of the three \dot{x}, \dot{y}, and \dot{z} for an uniform fluxion, to which the reft are to be referr'd, if \dot{x} be that fluxion, and its value is unity, then $\mathrm{CP}=$ $\frac{1-z z}{x}$
13. Befides it is $\mathrm{C} \Delta(\mathrm{I}): \Delta g(z):: \mathrm{CP}: \mathrm{PL}$; alfo $\mathrm{C} \Delta(\mathrm{I}): \mathrm{Cg}$ $(\sqrt{1-z z}):: C P: C L$; therefore it is $\mathrm{PL}=\frac{z-z^{3}}{z}$, and $\mathrm{CL}=$ $\frac{i-z z}{z} \sqrt{1-z z}$. Laftly, drawing $p q$ parallel to the infinitely fmall Arch $\mathrm{D} d$, or perpendicular to DC, Pq will be the momentum of DP, by the acceffion of which it becomes $d p$, at the fame time that AP becomes $A p$. Therefore P_{p} and Pq are as the fluxions of AP (x) and PD (y), that is, as I and y. Therefore becaufe of fimilar triangles $\mathrm{P} p q$ and $\mathrm{C} \Delta g$, fince $\mathrm{C} \Delta$ and Δg, or I and \mathcal{z}, are in the fame ratio, it will be $y=\boldsymbol{z}$. Whence we have this folution of the Problem.
14. From the propofed Equation, which exprefles the relation between x and y, find the relation of the fluxions x and y, (by Prob. i.) and putting $\dot{x}=\mathrm{I}$, there will be had the value of y, to which z is equal. Then fubftituting z for y, by the help of the laft Equation find the relation of the Fluxions x, \dot{y}, and \dot{z}, (by Prob. i.) and again fubftituting I for \dot{x}, there will be had the value of \dot{z}. Thefe being found make $\frac{1-\ddot{y}}{\dot{z}}=\mathrm{CP}, z \times \mathrm{CP}=\mathrm{PL}$, and $\mathrm{CP} \times \sqrt{\mathrm{I}-y y}$ $\pm C L$; and C will be a Point in the Curve, any part of which KC is equal to the right Line CG , which is the difference of the tangents, drawn perpendicularly to the Curve $\mathrm{D} d$ from the points, C and K 。
15. Ex. Let $a x=y y$ be the Equation which expreffes the relation between AP and PD; and (by Prob. ..) it will be firft $a x=2 y y$, or $a=2 y z$. Then $2 y z+2 y z=0$, or $\frac{-z z}{y}=\dot{z}$. Thence it is $\mathrm{CP}=$ $\frac{1-\ddot{\pi}}{\tilde{z}}=y-\frac{4^{3}}{a a}, \mathrm{PL}=z \times \mathrm{CP}=$ $\frac{1}{2} a-\frac{2 y y}{a}$, and $\mathrm{CL}=\frac{a a-4, y}{2 a a} \sqrt{4 y y-a a}$. And from CP and PL taking away y and x, there remains $\mathrm{CD}=-\frac{43^{3}}{a a^{3}}$, and $A L=\frac{1}{2} a-\frac{3 y}{a}$. Now I take away y and x, becauie when CP and
 PL have affirmative values, they fall on the fide of the point P towards D and A , and they ought to be diminimed, by taking away the affirmative quantities PD and AP. But when they have negative values, they will fall on the contrary fide of the point P, and then they muft be encreafed, which is alfo done by taking away the affirmative quantities PD and AP.
16. Now to know the Length of the Curve, in which the point C is found, between any two of its points K and C ; we muft feek the length of the Tangent at the point K , and fubtract it from CD. As if K were the point, at which the Tangent is terminated, when $\mathrm{C} \Delta$ and Δg, or 1 and \approx, are made equal, which therefore is fituate in the Abfcifs itfelf AP; write I for z in the Equation $a=2 y z$, whence $a=2 y$. Therefore for y write $-\frac{1}{2} a$ in the value of CD , that is in $-\frac{4)^{3}}{a a}$, and it comes out $-\frac{1}{2} a$. And this is the length of the Tangent at the point K , or of DG; the difference between which and the foregoing indefinite value of CD , is $\frac{4 y^{3}}{a a}-\frac{1}{2} a$, that is GC , to which the part of the Curve KC is equal.
17. Now that it may appear what Curve this is, from AL (having firft changed its fign, that it may become affirmative,) take AK, which will be $\frac{1}{4} a$, and there will remain KL $=\frac{3 y}{a}-\frac{3}{4} a$, which call t, and in the value of the line CL, which call v, write $\frac{4 a t}{3}$ for $4 y y$ - $a a$, and there will arife $\frac{2 t}{3 a} \sqrt{\frac{4}{3}} a t=v$; or $\frac{16 t^{3}}{27 a}=v v$, which is an Equation to a Parabola of the fecond kind, as was found before.
18. When the relation between t and v cannot conveniently be reduced to an Equation, it may be fufficient only to find the lengths PC and PL. As if for the relation between AP and PD the Equation $3 a^{2} x+3 a^{2} y-y^{3}=0$ were affumed; from hence (by Prob. I.) firft there arifes $a^{2}+a^{2} z-y^{2} z=0$, then $a a z-2 y y z-y^{2} z=0$, and therefore it is $z=\frac{a a}{y y-a a}$, and $\dot{z}=\frac{2 y z}{a a-y y}$. Whence are given $\mathrm{PC}=\frac{1-\ddot{y}}{\dot{z}}$, and $\mathrm{PL}=z \times \mathrm{PC}$, by which the point C is determined, which is in the Curve. And the length of the Curve, between two fuch points, will be known by the difference of the two correfponding Tangents, DC or $\mathrm{PC}-y$.
19. For Example, if we make $a=1$, and in order to determine fome point C of the Curve, we take $y=2$; then AP or x becomes $\frac{y^{3}-3^{a^{2} y}}{3^{a j}}=\frac{2}{3}, z=\frac{\pi}{3}, \dot{z}=-\frac{4}{9}, \mathrm{PC}=-2$, and $\mathrm{PL}=-\frac{2}{3}$. Then to determine another point, if we take $y=3$, it will be $\mathrm{AP}=6, z=\frac{1}{8}, z=-\frac{3}{2} \frac{3}{5}, \mathrm{PC}=-84$, and $\mathrm{PL}=-10 \frac{1}{2}$. Which being had, if y be taken from PC, there will remain - 4 in the firft cafe, and - 87 in the fecond, for the lengths DC ; the difference of which 8_{3} is the length of the Curve, between the two points found C and c.
20. Thefe are to be thus underftood, when the Curve is continued between the two points C and c, or between K and C , without that Term or Limit, which we call'd its Cufpid. For when one or more fuch terms come between thofe points, (which terms are found by the determination of the greateft or leaft PC or DC, the lengths of each of the parts of the Curve, between them and the points C or K , muft be feparately found, and then added together.

PR O B. XI.

To find as many Curves as you pleafe, whofe Lengths may be compared with the Length of any Curve propofed, or with its Area applied to a given Line, by the belp of finite Equations.

1. It is performed by involving the Length, or the Area of the propofed Curve, in the Equation which is affumed in the foregoing Problem, to determine the relation between $A P$ and $P D$ (Figure Art. I2. pag. i26.) Put that \approx and \approx may be thence derived, (by

Prob. i.) the fluxion of the Length, or of the Area, muft be firft difcover'd.
2. The fluxion of the Length is determin'd by putting it equal to the fquare-root of the fum of the fquares of the fluxion of the Abfcifs and of the Ordinate. For let RN be the perpendicular Ordinate, moving upon the Abfifs MN, and let $Q R$ be the propofed Curve, at which RN is terminated. Then calling MN $=s, \mathrm{NR}=t$, and $\mathrm{QR}=v$, and their Fluxions \dot{s}, \dot{t}, and \dot{v} refpectively; conceive the Line NR to move into the place $n r$ infinitely near the former, and letting fall Rs perpendicular to $n r$, then $R s, s r$,
 and $\mathrm{R} r$ will be the contemporaneous moments of the lines $M N$, $N R$, and $Q R$, by the acceffion of which they become $M n, n r$, and Qr. And as thefe are to each other as the fluxions of the fame lines, and becaufe of the right Angle $R s r$, it will be $\sqrt{\overline{\mathrm{Rs}^{2}+\overline{s r}}}$ $=\mathrm{R} r$, or $\sqrt{s^{2}+\dot{t}^{2}}=\dot{v}$.
3. But to determine the fluxions \dot{s} and \dot{t} there are two Equations. required ; one of which is to define the relation between $M N$ and $N R$, or s and t, from whence the relation between the fluxions s and t is to be derived; and another which may define the relation between MN or NR in the given Figure, and of AP or x in that required, from whence the relation of the fluxion s or \dot{t} to the fluxion x or I may be difcover'd.
4. Then v being found, the fluxions y and z are to be fought by a third affumed Equation, by which the length PD or y may be defined. Then we are to take $\mathrm{PC}=\frac{1-y y}{\dot{z}}, \mathrm{PL}=\dot{y} \times \mathrm{PC}$, and $\mathrm{DC}=\mathrm{PC}-y$, as in the foregoing Problem.
5. Ex. I. Let as - ss $=t t$ be an Equation to the given Curve QR , which will be a Circle; $x x=$ as the relation between the lines AP and MN , and $\frac{2}{3} v=y$, the relation between the length of the Curve given QR , and the right Line PD. By the firit it will be $a \dot{s}-2 s \dot{s}=2 t \dot{t}$, or $\frac{a-2 t}{2 t}=\dot{t}$. And thence $\frac{a s}{2 t}=\sqrt{s^{2}+\dot{t^{2}}}=\dot{v}$. By the fecond it is $2 x=a \dot{s}$, and therefore $\frac{x}{t}=\dot{v}$. And by the third $\frac{2}{3} \dot{v}=\dot{y}$, that is, $\frac{2 x}{3 t}=z$, and hence $\frac{2}{3 t}-\frac{2 x t}{3^{t t}}=\dot{z}$. Which being
being found, you muft take $\mathrm{PC}=\frac{1-\ddot{j}}{\tilde{z}}, \mathrm{PL}=\dot{y} \times \mathrm{PC}$, and DC $=P C-y$, or $P C-\frac{3}{3} Q R$. Where it appears, that the length of the given Curve QR cannot be found, but at the fame time the length of the right Line DC muft be known, and from thence the length of the Curve, in which the point C is found ; and fo on the contrary.
6. Ex.2. The Equation as-ss=tt remaining, make $x=s$, and $v v-4 a x=4 a y$. And by the firft there will be found $-\frac{a s}{2 t}=\dot{v}$, as above. But by the fecond $\mathrm{I}=\dot{s}$, and therefore $\frac{a}{2 t}=\dot{v}$. And by the third $2 \dot{v} v-4^{a}=4 a \dot{y}$, or (eliminating \dot{v}) $\frac{v}{4^{z}}-1=z$. Then from hence $\frac{\dot{v}}{4 t}-\frac{v t}{4 t t}=\dot{z}$.
7. Ex. 3. Let there be fuppos'd three Equations, $a a=s t, a+$ $3^{s}=x$, and $x+v=y$. Then by the firft, which denotes an Hyperbola, it is $0=\dot{s t}+\dot{t}$, or $-\frac{s t}{s}=\dot{t}$, and therefore $\frac{i}{s} \sqrt{s s+t t}$ $=\sqrt{\dot{s}+\ddot{t t}}=\dot{v}$. By the fecond it is $3^{\prime \prime}=1$, and therefore $\frac{1}{3} \sqrt{s s+t t}=\dot{v}$. And by the third it is $1+\dot{v}=\dot{y}$, or $1+$ $\frac{1}{3^{s}} \sqrt{s s+t t}=z$; then it is from hence $\dot{v}=\dot{z}$, that is, putting \dot{w} for the Fluxion of the radical $\frac{1}{3^{s}} \sqrt{s s+t} t$, which if it be made equal to w, or $\frac{1}{9}+\frac{t t}{9^{s}}=w w$, there will arife from thence $\frac{2 t t}{9 s s}$ $\frac{2 \mu i s}{9)^{3}}=2 w \dot{w}$. And firft fubftituting - $\frac{j t}{3}$ for \dot{t}, then $\frac{2}{3}$ for \dot{s}, and dividing by $2 w$, there will arife $\frac{-2 t t}{27 w s^{3}}=\dot{v}=\dot{z}$. Now \dot{y} and \dot{z} being found, the relt is perform'd as in the firft Example.
8. Now if from any point Q of a Curve, a perpendicular $Q V$ is let fall on MN, and a Curve is to be found whofe length may be known from the length which arifes by applying the Area QRNV to any given Line; let that given Line be call'd E, the length $\frac{\mathbb{Q} N \mathrm{E} V}{\mathrm{E}}$ which is produced by fuch application be call'd v, and its fluxion $\dot{\varepsilon}$. And fince the fluxion of the Area QRNV is to the Fluxion of the Area of a rectangular parallelogram made upon VN, with the heiglit E, as the Ordinate or moving line $\mathrm{NR}=t$, by which this is deferibed, to the moving Line E., by which the other is deferibed in
the fame time; and the fluxions \dot{v} and \dot{s} of the lines v and MN , (or s,) or of the lengths which arife by applying thofe Areas to the given Line E , are in the fame ratio; it will be $\dot{v}=\frac{\dot{t}}{\mathrm{E}}$. Therefore by this Rule the value of \dot{v} is to be inquired, and the reft to be perform'd as in the Examples aforegoing.
9. Ex. 4. Let QR be an Hyperbola which is defined by this Equation, $a a+\frac{a t s}{c}=t t$; and thence arifes (by Prob. x.) $\frac{a s s}{c}=t \dot{t}$, or $\frac{a, s}{c t}=\dot{t}$. Then if for the other two Equations are affumed $x=s$ and $y=v$; the firt will give $\mathrm{I}=\dot{s}$, whence $\dot{v}=\frac{\dot{t}}{\mathrm{E}}=\frac{1}{\mathrm{E}}$; and the latter will give $\dot{y}=\dot{v}$, or $z=\frac{t}{\mathrm{E}}$, then from hence $\dot{z}=\frac{\dot{t}}{\mathrm{E}}$, and fubflituting $\frac{a s i s}{c t}$ or $\frac{a s}{c t}$ for \dot{t}, it becomes $\dot{z}=\frac{a s}{E t t}$. Now \dot{y} and \dot{z} being found, make $\frac{1-\ddot{x}}{\dot{z}}=\mathrm{CP}$, and $\dot{y} \times \mathrm{CP}=\mathrm{PL}$, as before, and thence the Point C will be determin'd, and the Curve in which all fuch points are fituated: The length of which Curve will be known from the length DC , which is equivalent to $\mathrm{CP}-v$, as is fufficiently fhewn before.
ro. There is alfo another method, by which the Problem may be refolved; and that is by finding Curves whofe fluxions are either equal to the fluxion of the propofed Curve, or are compounded of the fluxion of that, and of other Lines. And this may fometimes be of ufe, in converting mechanical Curves into equable Geometrical Curves; of which thing there is a remarkable Example in fpiral lines.
ir. Let AB be a right Line given in pofition, BD an Arch mov \sim ing upon $A B$ as an Abfcifs, and yet retaining A as its Center, $\mathrm{AD} d$ a Spiral, at which that arch is continually terminated; $b d$ an arch indefinitely near it, or the place into which the arch BD by its motion next arrives, DC a perpendicular to the arch $b d$, d G the difference of the arches, AH another Curve equal to the Spiral AD, BH a right Line moving perpendicularly upon $A B$, and terminated at the Curve $A H, b b$ the next place into which that right Line moves,

and HK perpendicular to bb.

6b. And in the infinitely little triangles $\mathrm{DC} d$ and HK b, fince DC and HK are equal to the fame third Line $\mathrm{B} b$, and therefore equal to each other, and $\mathrm{D} d$ and $\mathrm{H} b$ (by hypothefis) are correfpondent parts of equal Curves, and therefore equal, as alfo the angles at C and K are right angles; the third fides $d \mathrm{C}$ and $b \mathrm{~K}$ will be equal alfo. Moreover fince it is $\mathrm{AB}: \mathrm{BD}:: \mathrm{A} b: b \mathrm{C}:: \mathrm{A} b-\mathrm{AB}(\mathrm{B} b)$: $B C-B D(C G)$; therefore $\frac{B D \times B b}{A B}=C G$. If this be taken away from $d \mathrm{G}$, there will remain $d \mathrm{G}-\frac{\mathrm{BD} \times \mathrm{B} b}{A B}=d \mathrm{C}=b \mathrm{~K}$. Call therefore $\mathrm{AB}=z, \mathrm{BD}=v$, and $\mathrm{BH}=y$, and their fluxions \dot{z}, \dot{v}, and \dot{y} refpectively, fince $\mathrm{B} b, d \mathrm{G}$, and $b \mathrm{~K}$ are the contemporaneous moments of the fame, by the acceffion of which they become $\mathrm{A} b, b d$, and $b b$, and therefore are to each other as the fluxions. Therefore for the moments in the laft Equation let the fluxions be fubftituted, as alfo the letters for the Lines, and there will arife \dot{v} $\frac{\dot{\sim} \tilde{z}}{z}=\dot{j}$. Now of thefe fluxions, if \dot{z} be fuppos'd equable, or the unit to which the reft are refer'd; the Equation will be $\dot{v}-\frac{v}{z}=\dot{j}$.
12. Wherefore the relation between AB and BD , (or between \approx and v,) being given by any Equation, by which the Spiral is defined, the fluxion v will be given, (by Prob. 1.) and thence alfo the fluxion j, by putting it equal to $\dot{j}-\frac{\approx}{z}$. And (by Prob: 2.) this will give the line y, or BH , of which it is the fluxion.
13. Ex. i. If the Equation $\frac{z z}{a}=v$ were given, which is to the Spiral of Arcbimedes, thence (by Prob. 1.) $\cdot \frac{2 z}{a}=\dot{v}$. From hence take $\frac{v}{z}$, or $\frac{z}{a}$, and there will remain $\frac{z}{a}=\dot{y}$, and thence (by Prob.2.) $\frac{z \approx}{2 a}=y$. Which hews the Curve AH, to which the Spiral AD is equal, to be the Parabola of Apollonius, whofe Latus rectum is 22 ; or whofe Ordinate BH is always equal to half the Arch BD.
14. Ex. 2. If the Spiral be propofed which is defined by the Equation $z^{3}=a v^{2}$, or $v=\frac{z^{\frac{3}{2}}}{a^{\frac{1}{2}}}$, there arifcs (by Prob. i.) $\frac{2 \sigma^{\frac{1}{2}}}{2 a^{\frac{1}{2}}}=\dot{i}$, from which if you take $\frac{v}{\approx}$, or $\frac{z^{\frac{1}{3}}}{a^{\frac{1}{2}}}$, there will remain $\frac{z^{\frac{1}{2}}}{2 u^{\frac{1}{2}}}=j$, ank thence (by Prob.2.) will be produced $\frac{z^{\frac{3}{2}}}{3^{\frac{1}{2}}}=y$. That is, $\frac{1}{3} \mathrm{BD}=$ BH, AH being a Parabola of the fecond kind.
15. Ex. 3. If the Equation to the Spiral be $z \sqrt{ } \frac{a+z}{c}=v$, thence (by Prob. I.) $\frac{2 a+3 z}{2 \sqrt{a c+c z}}=\dot{v}$; from whence if you take away $\frac{v}{z}$ or $\sqrt{\frac{a}{c}-z}$, there will remain $\frac{\approx}{2 \sqrt{a c+z}}=\dot{y}$. Now fince the quantity generated by this fluxion y cannot be found by Prob.2. unlefs it be refolved into an infinite Series; according to the tenor of the Scholium to Prob. 9. I reduce it to the form of the Equations in the firft column of the Tables, by fubftituting z^{h} for \mathcal{z}; then it becomes $\frac{z^{2 \eta-1}}{2 \sqrt{a c+c z^{n}}}=\dot{y}$, which Equation belongs to the 2 d Species of the 4 th Order of Table I. And by comparing the terms, it is $d=\frac{1}{2}, e=a c$, and $f=c$, fo that $\frac{z-2 a}{3 c} \sqrt{a c+c z}=t=y$. Which Equation belongs to a Geometrical Curve AH , which is equal in length to the Spiral AD.

PROB. XII.

To determine the Lengths of Curves.

I. In the foregoing Problem we have fhewn, that the Fluxion of a Curve-line is equal to the fquare-root of the fum of the fquares of the Fluxions of the Abfcifs and of the perpendicular Ordinate. Wherefore if we take the Fluxion of the Abfcifs for an uniform and determinate meafure, or for an Unit to which the other Fluxions are to be refer'd, and alfo if from the Equation which defines the Curve, we find the Fluxion of the Ordinate, we fhall have the Fluxion of the Curve-line, from whence (by Problem 2.) its Length may be deduced.
2. Ex. I. Let the Curve FDH be propofed, which is defined by the Equation $\frac{z^{3}}{a a}+\frac{a a}{i z z}=y$; making the $\mathrm{Abfcifs} \mathrm{AB}=z$, and the moving Ordinate $\mathrm{DB}=y$. Then from the Equation will be had, (by Prob. .) $\frac{3 z z}{a a}-\frac{a a}{1 z z z}=\dot{y}$, the fluxion of z being 1 , and y being the fluxion of y. Then adding the
 fquares of the fluxions, the fum will be $\frac{a z 4}{a^{4}}+\frac{z}{z}+\frac{a^{4}}{144^{4}}=i t$, and extracting the root, $\frac{3 z z}{a a}+\frac{a a}{12 z z}$

$$
=t \text {, }
$$

$=\dot{t}$, and thence (by Prob. 2.) $\frac{z^{z}}{\frac{a}{a}}-\frac{a z}{12 z}=t$. Here \dot{i} flands for the fluxion of the Curve, and t for its Length.
3. Therefore if the length $d \mathrm{D}$ of any portion of this Curve were required, from the points d and D let fall the perpendiculars $d b$ and DB to AB , and in the value of t fubtitute the quantities $A b$ and AB feverally for z, and the difference of the refults will be $d \mathrm{D}$ the Length required. As if $\mathrm{A} b=\frac{1}{2} a$, and $\mathrm{AB}=a$, writing $\frac{1}{2} a$ for z, it becomes $t=-\frac{a}{24}$; then writing a for z, it becomes $t=\frac{11 a}{12}$, from whence if the firft value be taken away, there will remain $\frac{23 a}{24}$ for the length $d \mathrm{D}$. Or if only $\mathrm{A} b$ be determin'd to be $\frac{1}{2} a$, and AB be look'd upon as indefinite, there will remain $\frac{z^{3}}{a a}-\frac{a a}{12 z}+\frac{a}{24}$ for the value of $d \mathrm{D}$.
4. If you would know the portion of the Curve which is reprefented by t, fuppofe the value of t to be equal to nothing, and there arifes $z^{4}=\frac{a 4}{12}$, or $z=\frac{a}{\sqrt{12}}$. Therefore if you take $\mathrm{AB}=\frac{a}{\sqrt{12}}$, and erect the perpendicular $b d$, the length of the Arch $d \mathrm{D}$ will be t, or $\frac{z^{3}}{a a}-\frac{a a}{12 z}$. And the fame is to be underftood of all Curves in general.
5. After the fame manner by which we have determin'd the length of this.Curve, if the Equation $\frac{z^{4}}{a^{3}}+\frac{a^{3}}{3^{3} z^{2}}=y$ be propofed, for defining the nature of another Curve; there will be deduced $\frac{x^{4}}{a^{3}}-\frac{a^{3}}{32 z^{2}}=t$; or if this Equation be propored, $\frac{z^{\frac{3}{2}}}{a^{\frac{1}{2}}}-\frac{\frac{1}{3}}{\frac{1}{3}} a^{\frac{1}{2}} z^{\frac{1}{2}}=y$, there will arife $\frac{z^{\frac{1}{2}}}{a^{\frac{1}{2}}}+\frac{1}{3} a^{\frac{1}{2}} z^{\frac{t}{2}}=t$. Or in general, if it is $c z^{\theta}+$ $\frac{x^{2}-b}{49\}^{-88 c}}=y$, where θ is ufed for reprefenting any number, either Integer or Fraction, we thall have $c z^{\theta}-\frac{z^{2-\theta}}{4 \operatorname{sbc}^{-8}-8 c c}=t$.
6. Ex.2. Let the Curve" be propofed which is defined by this Equation $\frac{2 a a+2 z x}{3 a a} \sqrt{a a+z z}=y$; then (by Prob. I.) will be had $y=\frac{4 x+z+3 a^{2} z^{2}+4 x^{5}}{34 y}$, or exterminating $y, y=\frac{2 z}{a a} \sqrt{a a+z z}$ To the fquare of which add 1 , and the fum will be $1+\frac{4 z i}{a k}+\frac{4 z 4}{a 4}$,
and its Root $1+\frac{2 z z}{a a}=\dot{t}$. Hence (by Prob. 2.) will be ab$\operatorname{tain}{ }^{\prime} d z+\frac{22^{3}}{3 a^{2}}=t$.
7. Ex. 3. Let a Parabola of the fecond kind be propofed, whofe Equation is $z^{3}=a y^{2}$, or $\frac{z^{\frac{3}{2}}}{a^{\frac{1}{3}}}=y$, and thence by Prob. I. is derived $\frac{3 z^{\frac{1}{2}}}{2 a^{\frac{1}{2}}}=j$. Therefore $\sqrt{1+\frac{9 z}{4 a}}=\sqrt{1+y y}=\dot{t}$. Now fince the length of the Curve generated by the Fluxion \dot{t} cannot be found by Prob. 2. without a reduction to an infinite Series of fimple Terms, I confult the Tables in Prob. 9. and according to the Scholium belonging to it, I have $t=\frac{8 a+18 z}{27} \sqrt{1+\frac{9 z}{4^{2}}}$. And thus you may find the lengths of thefe Parabolas $z^{3}=a y^{4}, z^{7}=a y^{6}, z^{3}=a y^{8}$, $\& c$.
8. Ex. 4. Let the Parabola be propofed, whofe Equation is \boldsymbol{z}^{4} $=a y^{3}$, or $\frac{z^{\frac{4}{3}}}{a^{\frac{1}{3}}}=y$; and thence (by Prob. r.) will arife $\frac{4 x^{\frac{3}{3}}}{3 a^{\frac{4}{5}}}=\dot{y}$. Therefore $\sqrt{1+\frac{16 \bar{y}^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}}=\sqrt{\overline{y y}+1}=\ddot{t}$. This being found, I confult the Tables according to the aforefaid Scholium, and by comparing with the 2 d Theorem of the 5 th Order of Table 2, I have $z^{\frac{1}{3}}=x, \sqrt{1+\frac{16 x x}{g^{\frac{3}{3}}}}=v$, and $\frac{3}{2} s=x$. Where x denotes the Ab fcifs, y the Ordinate, and s the Area of the Hyperbola, and t the length which arifes by applying the Area $\frac{3}{2} s$ to linear unity.
9. After the fame manner the lengths of the Parabolas $z^{6}=a y^{\prime \prime}$, $z^{8}=a y^{7}, z^{10}=a y^{y}, \&<c$. may alfo be reduced to the Area of the Hyperbola.
10. Ex. 5. Let the Ciffoid of the Ancients be propofed, whofe Equation is $\frac{a a-2 a z+z z}{\sqrt{a z-z \tilde{z}}}=y$, and thence (by Prob. 1.) $\frac{-a-2 z}{z z z}$ $\sqrt{a z-z z}=\dot{y}$, and therefore $\frac{a}{2 z} \sqrt{\frac{a}{}+3 z}=\sqrt{z y+1}=\dot{t}$; which by writing z^{4} for $\frac{1}{z}$ or z^{-x}, becomes $\frac{a}{2 z} \sqrt{a z^{4}+3}=i$, an Equation of the ift Species of the 3 d Order of Table 2; then comparing the Terms, it is $\frac{a}{2}=d, 3=e$, and $a=f$; fo that $z=\frac{1}{z^{n}}=x^{2}, \sqrt{a+3 x x}=v$, and $6 s-\frac{2 v v^{3}}{x}=\frac{4 d e}{n f}$ into $\frac{\tau z}{2 e x}-s=t$.

And taking a for Unity, by the Multiplication or Divifion of which, thefe Quantities may be reduced to a juft number of Dimenfions, it becomes $a z=x x, \sqrt{a a+3 x x}=v$, and $\frac{6 s}{a}-\frac{2 \pi 3}{a \cdot x}$ $\Longrightarrow t$: Which are thus conftructed.
II. The Ciffoid being VD, AV the Diameter of the Circle to which it is adapted, AF its Afymptote, and DB perpendicular to AV, cutting the Curve in D; with the Semiaxis $A F=A V$, and the Semiparameter $\mathrm{AG}=\frac{1}{3} \mathrm{AV}$, let the Hyperbola FkK be defcribed; and taking AC a mean Proportional between $A B$ and $A V$, at C and V let $C k$ and $V K$ drawn perpendicular to AV, cut the Hyperbola in k, and K , and let right Lines $k t$ and KT touch it in thofe points, and cut AV in t and T; and at AV let the Rectangle AVNM be defcribed, equal to the Space TKkt. Then the length of the Ciffoid VD will be fextuple of the Altitude VN.

12. Ex. 6. Suppofing Ad to be an Ellipfis, which the Equation $\sqrt{a z-2 z z}=y$ reprefents; let the mechanical Curve AD be propofed of fuch a nature, that if $\mathrm{B} d$, or y, be produced till it meets this Curve at D , let BD be equal to the Elliptical Arch Ad. Now that the length of this may be determin'd, the Equation $\sqrt{a z-2 z z}=y$ will give
 $\frac{a-4 z}{2 \sqrt{a z-2 z z}}=\dot{y}$, to the fquare of which if I be added, there arifes $\frac{a a-4 a z+8 z z}{4 a z-8 z z}$, the fquare of the fluxion of the arch Ad. To which if I be added again, there will arife $\frac{a n}{4 a z-8 z z}$, whofe fquare-root $\frac{a}{2 \sqrt{a} z-2 \approx z}$ is the fluxion of the Curve-line AD . Where if \approx be extracted out of the radical, and for z^{-1} be written \approx^{4}, there will be had $-\frac{a}{2 \approx \sqrt{a \approx \eta-2}}$, a Fluxion of the 1 it Species of the 4 th Order of Table 2. Therefore the terms being coilated, there will arife $d=\frac{1}{2} a$, $e=-2$, and $f=a$; fo that $z=\frac{1}{z^{n}}=x, \sqrt{\operatorname{ax-2x}}=v$, and $\frac{x_{s}}{a}-\frac{4 x v}{a}+v=\frac{8 \dot{d} \varepsilon}{v i f^{2}}$ into $s-\frac{1}{2} x v-\frac{f v}{4 e}=t$.
13. The Conftruction of which is thus; that the right line $d C$ being drawn to the center of the Ellipfis, a parallelogram may be made upon AC , equal to the fector $\mathrm{AC} d$, and the double of its height will be the length of the Curve AD.
14. Ex. 7. Making $A \beta=\varphi$, (Fig. r.) and $\alpha \delta$ being an Hyperbola, whofe Equation is $\sqrt{-a+b \phi \varphi}=\beta \delta$, and its tangent δT being drawn ; let the Curve $\mathrm{V} d \mathrm{D}$ be propofed, whofe Abfcifs is $\frac{1}{\varphi D}$, and its perpendicular Ordinate is the length $B D$, which arifes by applying the Area a $\delta \mathrm{T}_{\alpha}$ to linear unity. Now that the length of this Curve VD may be determin'd, I feek the fluxion of the Area $\alpha \delta^{\circ} \mathrm{T} \alpha$, when AB flows uniformly, and I find it to be $\frac{a}{4 b z}$ $\sqrt{b-a z}$, putting $\mathrm{AB}=z$, and its fluxion unity. For
 'tis $\mathrm{AT}=\frac{a}{b_{p}}=\frac{a}{b} \sqrt{ } \approx$, and its fluxion is $\frac{a}{2 b \sqrt{z}}$, whofe half drawn into the altitude $\beta \delta$, or $\sqrt{-a+\frac{b}{z}}$, is the fluxion of the Area $a \delta T$, defcribed by the Tangent $\delta \mathrm{T}$. Therefore that fluxion is $\frac{a}{4 b z} \sqrt{b-a z}$, and this apply'd to unity becomes the fluxion of the Ordinate $B D$. To the fquare of this $\frac{a a b-a^{3} z}{16 b^{2} z^{2}}$ add I , the fquare of the fluxion BD , and there arifes $\frac{a a b-a^{3} z+16 b^{2} x^{2}}{16 b^{2} z^{2}}$, whofe root $\frac{1}{4 b z}$ $\sqrt{a^{2} b-a^{3} z+16 b^{2} z^{2}}$ is the fluxion of the Curve VD. But this is a fluxion of the If Species of the 7 th Order of Table 2: and the terms being collated, there will be $\frac{1}{4 \underline{b}}=d, a a b=e,-a^{3}=f$, $16 b^{2}=g$, and therefore $z=x$, and $\sqrt{a^{2} b-a^{3} x+16 b^{2} x^{2}}=v$, (an Equation to one Conic Section, fuppofe HG, (Fig. 2.) whofe Area EFGH is s, where EF $=x$, and $\mathrm{FG}=v$;) alfo $\frac{1}{z}=\xi$, and $\sqrt{166 b-a^{3} \xi+a b \xi^{2}}=r$, (an Equation to another Conic Section,

Section, fuppofe ML (Fig. 3.) whofe Area IKLM is σ, where IK
 15. Wherefore that the length of any portion $\mathrm{D} d$ of the Curve VD may be known, let fall $d b$ perpendicular to $A B$, and make $A b$ $=z$; and thence, by what is now found, feek the value of t. Then make $\mathrm{AB}=\sim$, and thence alfo feek for t. And the difference of thefe two values of t will be the length $\mathrm{D} d$ required.
16. Ex. 8. Let the Hyperbola be propos'd, whofe Equation is $\sqrt{a a+b z z}=y$, and thence, (by Prob. I.) will be had $j=\frac{b z}{j}$, or $\frac{b z}{\sqrt{a a+b z \pi}}$. To the fquare of this add 1 , and the root of the fum will be $\sqrt{ } \frac{a a+b z z+b b z z}{a a+b z z}=\dot{t}$. Now as this fluxion is not to be found in the Tables, I reduce it to an infinite Series; and firft by divifion it becomes $\dot{t}=\sqrt{\mathrm{I}+\frac{b^{2}}{a^{2}} z^{2}-\frac{b^{3}}{a^{4}} z^{4}+\frac{b 4}{a^{8}} z^{6}-\frac{b^{5}}{a^{8}} z^{8}}$, \&cc. and extracting the root, $\dot{t}=1+\frac{b^{2}}{2 a^{2}} z^{2}-\frac{4^{63}+b^{4}}{8 a^{4}} z^{4}+\frac{814+4^{65}+b^{6}}{16 a^{6}} z^{6}$, \&c. And hence (by Prob. 2.) may be had the length of the Hyperbolical Arch, or $t=z+\frac{b^{2}}{6 a^{2}} z^{3}-\frac{463+b 4}{40 a^{4}} z^{3}+\frac{864+4^{25}+b^{6}}{112 a^{6}} z^{\prime}$, \&c.
17. If the Ellipfis $\sqrt{a a-b z z}=y$ were propofed, the Sign of δ ought to be every where changed, and there will be had $z+$ $\frac{b^{2}}{6 a^{2}} z^{3}+\frac{46^{3}-14}{40 a^{4}} z^{3}+\frac{8 b 4-4^{65}+b^{6}}{112 a^{6}} z^{7}$, \&c. for the length of its Arch. And likewife puitting Unity for b, it will be $z+\frac{z^{3}}{6 a^{2}}+$ $\frac{3 z^{4}}{40 a^{4}}+\frac{5 x^{7}}{112 a^{6}}, 8 x c$. for the length of the Circular Arch. Now the numeral coefficients of this feries may be found ad infinitum, by multiplying continually the terms of this Progreffion $\frac{1 \times 1}{2 \times 3}, \frac{3 \times 3}{4 \times 5}, \frac{5 \times 5}{0 \times 7}$, $\frac{7 \times 7}{8 \times 9}, \frac{9 \times 9}{10 \times 11}, 8 c$.
18. Ex. 9. Laftly, let the Quadratrix VDE be propofed, whofe Vertex is V, A being the Center, and AV the femidiameter of the interior Circle, to which it is adapted, and the Angle VAE being a right Angle. Now any right Line AKD being drawn through A, cutting the Circle in K , and the Quadratrix in D , and the perpendiculars KG , DB being let fall
 to AE ; call $\mathrm{AV}=a, \mathrm{AG}=z, \mathrm{VK}=x$, and $\mathrm{BD}=y$, and it
will be as in the foregoing Example, $x=z+\frac{z^{3}}{6 a^{2}}+\frac{3 z^{5}}{40 a^{4}}+\frac{52^{7}}{112 a 6}$; \&c. Extract the root z, and there will arife $z=x-\frac{x^{3}}{6 a^{2}}+\frac{x^{5}}{120 a^{4}}$ - $\frac{x^{7}}{5040 u^{6}}$, \&cc. whofe Square fubtract from $\mathrm{AK} q$, or \dot{a}^{2}, and the root of the remainder $a-\frac{x^{2}}{2 a}+\frac{x^{4}}{24^{3}}-\frac{x^{6}}{7^{20 a^{5}}}$, \& cc. will be GK. Now whereas by the nature of the Quadratrix 'tis $\mathrm{AB}=\mathrm{VR}=x$, and fince it is $A G: G K:: A B: B D(y)$, divide $A B \times G K$ by $A G$, and there will arife $y=a-\frac{x x}{3 a}-\frac{x^{4}}{45^{3}}-\frac{2 .^{6}}{945^{5}}$, \&cc. And thence, (by Prob. 1.) $\dot{y}=-\frac{2 x}{3^{a}}-\frac{4 x^{3}}{45^{3-3}}-\frac{4 x^{5}}{3155^{5}}$, $\& \mathrm{xc}$. to the fquare of which add I , and the root of the fum will be $\mathrm{I}+\frac{2 \times x}{9 a a}+\frac{14 x^{4}}{4055^{4}}$ $+\frac{604 x^{6}}{127574^{6}}$, \&cc. $=\dot{t}$. Whence (by Prob. 2.), t may be obtain'd, or the Arch of the Quadratrix ; viz. VD $=x+\frac{2 x^{3}}{27 a^{3}}+\frac{14 x^{4}}{2825^{4}}+$ $\frac{604 \times^{7}}{893024^{6}}, 8 \mathrm{c}$;

THE

THE

METHOD of FLUXIONS

A N D

INFINITESERIES;

OR,

A PERPETUAL COMMENT upon the foregoing Treatise.

$$
\begin{aligned}
& \text { T } 4 \\
& \text { 24018U, 12 } 19 \text { :30117482 }
\end{aligned}
$$

$$
\begin{aligned}
& \pi i
\end{aligned}
$$

THE

METHOD of FLUXIONS

AND

I N F I N I TE SERIES.

Annotations on the Introduction:

O R,

The Refolution of Equations by Infinite Series.

> Sect. I. Of the Nature and ConftruEtion of Infinite or Converging Series.
HE great Author of the foregoing Work begins it with a Chort Preface, in which he lays down his main defign very concifely. He is not to be here underftood, as if he would reproach the modern Geometricians with deferting the Ancients, or with abandoning their Synthetical Method of Demonftration, much lefs that he intended to difparage the Analytical Art ; for on the contrary he has very much improved both Methods, and particularly in this Treatife he wholly applies himfelf to cultivate Analyticks, in which he has fucceeded to univerfal applaufe and admiration. Not but that we fhall find here fome examples of the Synthetical Method likewife, which are very mafterly and elegant. Almoft all that remains of the ancient Geometry is indeed Synthetical, and proceeds by way of demonftrating truths already known, by fhewing their dependence upon the Axioms, and other
other Grit Prirciples, either mediately or immediately. But the butinets of Analyticks is to inveftigate fuch Mathematical Truths as reaily are, or may be fuppos'd at leaft to be unknown. It affumes thofe Truths as granted, and argues from them in a general manner, till after a feries of argumentation, in which the feveral fteps have a neceflary connexion with each other, it arrives at the knowledge of the propofition required, by comparing it with fomething really known or given. This therefore being the Art of Invention, it certainly deferves to be cultivated with the utmoft induftry. Many of our modern Geometricians have been perfuaded, by confidering the intricate and labourd Demonftrations of the Ancients, that they wete Mafters of an Analyfis purely Geometrical, which they ftudi-, oufly conceal'd, and by the help of which they deduced, in a direct and fcientifical manner, thofe abftrufe Propofitions we fo much admire in रome of their writings, and which they afterwards demonfrated Synthetically. But however this may be, the lofs of that Analyfis, if any fuch there wcre, is amply compenfated, I think, by our prefent Arithmetical or Algebraical Analyfis, efpecially as it is now improved, I might fay perfected, by our fagacious Author in the Method before us. It is not only render'd vaftly more univerfal and extemfe than that other in all probability could ever be, but is likewife a moft compendious Analylis for the more abftrufe Geometrical Speculations, and for deriving Conftructions and Synthetical Demonftrations from thence; as may abundantly appear from the enfuing Treatife.
2. The conformity or correfpondence, which our Author takes notice of here, between his new-invented Doctrine of infinite Series, and the commonly received Decimal Arithmetick, is a matter of confiderable importance, and well deferves, I think, to be fet in a fuller Light, for the mutual illuftration of both; which therefore I fhall here attempt to perform. For Novices in this Doctriné, tho' they may already be well acquainted with the Vulgar Arithmetick, and with the Rudiments of the common Algebra, yet are apt to apprehend fomething abftrufe and difficult in infinite Series; whereas indeed they lave the fame general foundation as Decimal Arithmetick, effecially Decimal Fractions, and the fame Notion or Notation is only carry'd fill farther, and render'd more univerfal. But to thew this in fome kind of order, I muft inquire into thefe fcllowing particulars. Firft I muft fhew what is the true Nature, and what are the genuine Principles, of our common Scale of Decimal Arithmetick. Secondly what is the nature of other particular Scales, which have been, or
may be, occafionally introduced. Thirdly, what is the nature of a general Scale, which lays the foundation for the Doctrine of infinite Series. Lafty, I hall add a word or two concerning that Scale of Arithmetick in which the Root is unknown, and therefore propofed to be found ; which gives occafion to the Doctrine of Affected Equations.

Firft then as to the common Scale of Decimal Arithmetick, it is that ingenious Artifice of exprefling, in a regular manner, all conceivable Numbers, whether Integers or Fractions, Rational or Surd, by the feveral Powers of the number Ten, and their Reciprocals; with the affiftance of other fimall Intcger Numbers, not excceding Nine, which are the Coefficients of thofe Powers. So that Ten is here the Root of the Scale, which if we denote by the Cnaracter X , as in the Roman Notation and its feveral Powers by the help of this Root and Numeral Indexes, ($\mathrm{X}^{1}=10, \mathrm{X}^{2}=100, \mathrm{X}^{3}=1000$, $X^{4}=10000, \& c$) as is ufual; then by affuming the Cozfficients $0,1,2,3,4,5,6,7,8,9$, as occafion thall require, we may form or exprefs any Number in this Scale. Thus for inftance $5 \mathrm{X}^{4}+7 \mathrm{X}^{3}+$ $4 X^{2}+8 X^{1}+3 X^{0}$ will be a particular Number exprefs'd by this Scale, and is the fame as 57483 in the common way of Notation. Where we may obferve, that this laft differs from the other way of Notation only in this, that here the feveral Powers of X (or Ten) are fupprefs'd, together with the Sign of Addition + , and are left to be fupply'd by the Underftanding. For as thofe Powers afcend regularly from the place of Units, (in which is always X°, or I , multiply'd by its Coefficient, which here is 3 ,) the feveral Powers will eafily be underfood, and may therefore be omitted, and the Coefficients only need to be fet down in their proper order. Thus the Number 7906538 will fand for $7 \mathrm{X}^{6}+9 \mathrm{X}^{5}+\mathrm{o} \mathrm{X}^{4}+6 \mathrm{X}^{3}+$ $5 \mathrm{X}^{2}+3 \mathrm{X}^{2}+8 \mathrm{X}^{\circ}$, when you fupply all that is underfood. And the Number 1736 (by fupprefling what may be eafily inderfood.) will be equivalent to $X^{3}+7 X^{2}+3 X+6$; and the like of all other Integer Numbers whatever, exprefs'd by this Scale, or with this Root X , or Ten.

The fame Artifice is uniformly carry'd on, for the exprefling of all Decimal Fractions, by means of the Reciprocals of the feveral Powers of Ten, fuch as $\frac{1}{\mathrm{X}}=0,1 ; \frac{1}{\mathrm{x}^{2}}=0,01 ; \frac{1}{\mathrm{X}^{3}}=0,001$; \&xc. which Reciprocals may be intimated by negative Indices. Thus the Decimal Fraction 0,3172 ftands for $3 \mathrm{X}^{-1}+1 \mathrm{X}^{-2}+7 \mathrm{X}+2 \mathrm{X}^{-4}$; and the mixt Number 526,384 (by fupplying what is underfood) U
becomes $5 \mathrm{X}^{2}+2 \mathrm{X}^{3}+6 \mathrm{X}^{0}+3 \mathrm{X}^{-1}+8 \mathrm{X}^{-2}+4 \mathrm{X}^{-3}$; and the infinite or interminate Decimal Fraction 0,9999999, \&c. flands for $9 X^{-3}+9 X^{-2}+9 X^{-3}+9 X^{-4}+9 X^{-5}+9 X^{-6}$, \&cc. which infinite Series is equivalent to Unity. So that by this Decimal Scale, (or by the feveral Powers of Ten and their Reciprocals, together with their Coefficients, which are all the whole Numbers below Ten,) all. conceivable Numbers may be exprefs'd, whether they are integer or fracted, rational or irrational; at leaft by admitting of a continual progrefs or approximation ad infinitum.

And the like may be done by any other Scale, as well as the Decimal Scale, or by admitting any other Number, befides Ten, to be the Root of our Arithmetick. For the Root Ten was an arbitrary Number, and was at firit affumed by chance, without any previous confideration of the nature of the thing. Other Numbers perhaps may be affign'd, which would have been more convenient, and which have a better claim for being the Root of the Vulgar Scale of Arithmetick. But however this may prevail in common affairs, Mathematicians make frequent ufe of other Scales; and therefore in the fecond place I fhall mention fome other particular Scales, which have been occafionally introduced into Computations.

The moft remarkable of thefe is the Sexagenary or Sexagefimal Scale of Arithmetick, of frequent ufe among Aftronomers, which expreffes all poffible Numbers, Integers or Fractions, Rational or Surd, by the Powers of Sixty, and certain numeral Coefficients not exceeding fiftynine. Thefe Coefficients, for want of peculiar Charaters to reprefent them, muft be exprefs'd in the ordinary Decimal Scale. Thus if ξ fands for 60 , as in the Greek Notation, then one of thefe Numbers will be $53 \xi^{\xi^{2}}+9 \xi^{x}+34 \xi^{\circ}$, or in the Sexagenary Scale $53^{\prime \prime}, 9^{\prime}$, 34°, which is equivalent to 191374° in the Decimal Scale. Agrin, the Sexagefimal Fraction $53^{\circ}, 9^{\prime}, 34^{\prime \prime}$, will be the fame as $53 \xi^{\circ}+$ $9 \xi^{-1}+34 \xi^{-2}$, which in Decimal Numbers will be 53,159444 , 8xc. ad infinitum. Whence it appears by the way, that fome Numbers may be exprefs'd by a finite number of Terms in one Scale, which in another cannot be exprefs'd but by approximation, or by a progreffion of Terms in infinitum.

Another particular Scale that has been confider'd, and in fome meafure has been admitted into practice, is the Deodecimal Scale, which expreffes all Numbers by the Powers of Twelve. So in common affairs we fay a Dozen, a Dozen of Dozens or a Grofs, a Dozen of Grofles or a great Grofs, $\mathcal{F}_{\mathcal{C}}$. And this perhaps would have been the moft convenient Root of all others, by the Powers of which
to conftruet the popular Scale of Arithmetick; as not teing fo lig but that its Multiples, and all below it, might be eafily committed to memory ; and it admits of a greater variety of Divifors than any Number not much greater than itfelf. Befides, it is not fo fmall, but that Numbers exprefs'd hereby would fufficiently converge, or by a few figures would arrive near enough to the Number required; the contrary of which is an inconvenience, that muft neceflarily attend the taking too fmall a Number for the Root. And to admit this Scale into practice, only two fingle Characters would be wanting, to denote the Coefficients Ten and Eleven.

Some have confider'd the Binary Arithmetick, or that Scale in which $\mathcal{T} w o$ is the Root, and have pretended to make Computations by it, and to find confiderable advantages in it. But this can never be a convenient Scale to manage and exprefs large Numbers by, becaufe the Root, and confequently its Powers, are fo very fmall, that they make no difpatch in Computations, or converge exceeding flowly. The only Coefficients that are here neceffary are 0 and I . Thus $1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{5}+0 \times 2^{\circ}$ is one of there Numbers, (or compendioufly ifoiro,) which in the common Notation is no more than 54. Mr. Leibnits imagin'd he had found great Myfteries in this Scale. See the Memoirs of the Royal Academy of Paris, Anno 1703.

In common affairs we have frequent recourfe, though tacitly, to Millenary Arithmetick, and other Scales, whofe Roots are certain Powers of Ten. As when a large Number, for the convenience of reading, is diftinguifh'd into Periods of three figures: As $382,735,628,490$. Here 382 , and $735, \bigotimes^{2} c$. may be confider'd as Coefficients, and the Root of the Scale is 1000 . So when we reckon by Millions, Billions, Trillions, $\mathcal{E}^{\circ} c$. a Million may be conceived as the Root of our Arithmetick. Alfo when we divide a Number into pairs of figures, for the Extraction of the Square-root ; into ternaries of figures for the Extraction of the Cube-root; $\mathcal{F i c}_{c}$. we take new Scales in effect, whofe Roots are $100,1000, \mathcal{E F}^{2} c$.

Any Number whatever, whether Integer or Fraction, may be made the Root of a particular Scale, and all conceivable Numbers may be exprefs'd or computed by that Scale, admitting only of integral and affirmative Coefficients, whofe number (including the Cypher o) need not be greater than the Root. Thus in Quinary Arithmetick, in which the Scale is compofed of the Powers of the Root 5 , the Coefficients need be only the five Numbers $0,1,2,3,4$, and yet all Numbers whatever are expreffible by this Scale, at leaft by approxi-
mation, to what accuracy we pleafe. Thus the common Number 2827,92 in this Arithmetick would be $4 \times 5^{4}+2 \times 5^{3}+3 \times 5^{2}+$ $0 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1}+3 \times 5^{-2}$; or if we may fupply the feveral Powers of 5 by the Imagination only, as we do thofe of Ten in the common Scale, this Number will be 42302,43 in Quinary Arithmetick.

All vulgar Fractions and mixt Numbers are, in fome meafure, the exprefling of Numbers by a particular Scale, or making the Denominator of the Fraction to be the Root of a new Scale. Thus $\frac{2}{3}$ is in effect $0 \times 3^{\circ}+2 \times 3^{-1}$; and $8 \frac{3}{5}$ is the fame as $8 \times 5^{\circ}+3 \times 5^{-1}$; and $25 \frac{4}{9}$ reduced to this Notation will be $25 \times 9^{\circ}+4 \times 9^{-1}$, or rather $2 \times 9^{1}+7 \times 9^{\circ}+4 \times 9^{-1}$. And fo of all other Eractions and mixt Numbers.

A Number computed by any one of thefe Scales is eafily reduced to any other Scale affign'd, by fubftituting inftead of the Root in one Scale, what is equivalent to it exprefs'd by the Root of the other Scale. Thus to reduce Sexagenary Numbers to Decimals, becaufe $60=6 \times 10$, or $\xi=6 \mathrm{X}$, and therefore $\xi^{2}=36 \mathrm{X}^{2}, \xi^{3}=216 \mathrm{X}^{3}$, \mathcal{E}_{c}. by the fubftitution of thefe you will eafily find the equivalent Decimal Number. And the like in all other Scales.

The Coefficients in thefe Scales are not neceflarily confin'd to be affirmative integer Numbers lefs than the Root, (tho' they fhould be fuch if we would have the Scale to be regular,) but as occafion may require they may be any Numbers whatever, affirmative or negative, integers or fractions. And indeed they generally come out promifcuoully in the Solution of Problems. Nor is it neceflary that the Indices of the Powers fhould be always integral Numbers, but may be any regular Arithmetical Progreffion whatever, and the Powers themfelves either rational or irrational. And thus (thirdly) we are come by degrees to the Notion of what is call'd an univerfal Series, or an indefinite or infinite Series. For fuppofing the Root of the Scale to be indefinite, or a general Number, which may therefore be reprefented by x, or $y, \delta<c$. and affuming the general Coefficients $a, b, c, d, \& c$. which are Integers or Fractions, affirmative or negative, as it may happen; we may form fuch a Series as this, $a x^{4}+$ $b x^{3}+c x^{2}+d x^{7}+e x^{0}$, which will reprefent fome certain Number, exprefs'd by the Scale whofe Root is x. If fuch a Number proceeds in infonitum, then it is truly and properly call'd an Infinite Series, or a Converging Series, x being then fuppos'd greater than Unity. Such for example is $x^{2}+\frac{1}{2} x^{-1}+\frac{1}{3} x^{-2}+\frac{1}{4} x^{-3}$, \&c. where the reft of the Terms are underfood ad infinitum, and are infinuated
by, \mathcal{B}_{i}. And it may have any defcending Arithmetical Progreflion for its Indices, as $x^{m}-\frac{2}{3} x^{m-1}+\frac{3}{4} x^{m-2}+\frac{4}{5} x^{m-3}$, $\underbrace{\circ} c$.

And thus we have been led by proper gradations, (that is, by arguing from what is well known and commonly received, to what before appear'd to be difficult and obfcure,) to the knowledge of infinite Series, of which the Learner will find frequent Examples in the fequel of this Treatife. And from hence it will be eafy to make the following general Inferences, and others of a like nature, which will be of good ufe in the farther knowledge and practice of thefe Series; viz. That the firft Term of every regular Series is always the molt confiderable, or that which approaches nearer to the Number intended, (denoted by the Aggregate of the Series,) than any other fingle Term : That the fecond is next in value, and fo on: That therefore the Terms of the Series ought always to be difpofed in this regular defcending order, as is often inculcated by our Author : That when there is a Progrefion of fuch Terms ins infinitum, a few of the firt Terms, or thofe at the beginning of the Series, are or fhould be a fufficient Approximation to the whole; and that thefe may come as near to the truth as you pleafe, by taking in ftill more Terms: That the fame Number in which one Scale may be exprefs'd by a finite number of Terms, in another cannot be exprefs'd but by an infinite Series, or by approximation only, and vice versâ: That the bigger the Root of the Scale is, by fo much the fafter, cater is paribus, the Series will converge; for then the Reciprocals of the Powers will be fo much the lefs, and therefore may the more fafely be neglected: That if a Series converges by increafing Powers, fuch as $a x+b x^{2}+c x^{3}+d x^{4}, 8$ c. the Root x of the Scale mult be underftood to be a proper Fraction, the leffer the better. Yet whenever a Series can be made to converge by the Reciprocals of Ten, or its Compounds, it will be more convenient than a Series that converges fafter; becaufe it will more eafily acquire the form of the Decimal Scale, to which, in particular Cafes, all Series are to be ultimately reduced. Laftly, from fuch general Series as thefe, which are commonly the refult in the higher Problems, we muft pafs (by fubftitution) to particular Scales on Series, and thofe are finally to be reduced to the Decimal Scale. And the Art of finding fuch general Series, and then their Reduction to particular Scales, and laft of all to the common Scale of Decimal Numbers, is almoft the whole of the abituluer parts of Analyticks, as may be feen in a good meafure by the prefent Treatife.

I took notice in the fourth place, that this Doctrine of Scales, and Series, gives us an eafy notion of the nature of affected Equations, or thews us how they ftand related to fuch Scales of Numbers. In the other Inftances of particular Scales, and even of general ones, the Root of the Scale, the Coefficients, and the Indices, are all fuppos'd to be given, or known, in order to find the Aggregate of the Serics, which is here the thing required. But in affected Equations, on the contrary, the Aggregate and the reft are known, and the Rcot of the Scale, by which the Number is computed, is unknown and required. Thus in the affected Equation $5^{x^{4}+3 x^{3}+0 x^{2}+7 x=}$ 53070, the Aggregate of the Series is given, viz. the Number 53070 , to find x the Root of the Scale. This is cafily difcern'd to be io, or to be a Number exprefs'd by the common Decimal Scale, efpecially if we fupply the feveral Powers of io, where they are underitood in the Aggregate, thus $5 \mathrm{X}^{4}+3 \mathrm{X}^{3}+0 \mathrm{X}^{2}+7 \mathrm{X}^{1}+0 \mathrm{X}^{\circ}$ $=53070$. Whence by comparifon 'tis $x=\mathrm{X}=10$. But this will not be fo eafily perceived in other inftances. As if I had the Equation $4 x^{4}+2 x^{3}+3 x^{2}+0 x^{5}+2 x^{0}+4 x^{-1}+3 x^{-2}=2827,92$ I thould not fo eafily perceive that the Root x was 5 , or that this is a Number exprefs'd by Quinary Arithmetick, except I could reduce it to this form, $4 \times 5^{4}+2 \times 5^{3}+3 \times 5^{2}+0 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1}$ $+3 \times 5^{-2}=2827,92$, when by comparifon it would preiently appear, that the Root fought muft be 5. So that finding the Root of an affected Equation is nothing elfe, but finding what Scale in Arithmetick that Number is computed by, whofe Refult or Aggregate is given in the common Scale; which is a Problem of great ufe and extent in all parts of the Mathematicks. How this is to be done, either in Numeral, Algebraical, or Fluxional Equations, our Author will inftruct us in its due place.

Pefore I difmifs this copious and ufeful Subject of Arithmetical Scales, I fhall here make this farther Obfervation; that as all conceivable Numbers whatever may be exprefs'd by any one of thefe Scales, or by help of an Aggregate or Series of Powers derived from any Root; fo likewife any Number whatever may be exprefs'd by fome fingle Power of the fame Root, by affuming a proper Index, integer or fracted, affirmative or negative, as occafion hall require. Thus in the Decimal Scale, the Root of which is 10, or X, not only the Numbers I, 10, 100, 1000 , Eic. or I, 0.1, $0.01,0.001, \mathcal{F} c$. that is, the feveral integral Powers of to and their Reciprocals, may be exprefs'd by the frngle Powers of X or ro, viz. $\mathrm{X}^{\circ}, \mathrm{X}^{1}, \mathrm{X}^{3}, \mathrm{X}^{3}$, $\mathcal{E} c$. or $\mathrm{X}^{\circ}, \mathrm{X}^{-1}, \mathrm{X}^{-2}, \mathrm{X}^{-3}, \mathcal{F}^{2} c$. refpectively, but alfo all the intermediate
mediate Numbers, as $2,3,4, \mathcal{E} c$. II, 12, I3, $\mathcal{E} c$. may be exprefs'd by fuch fingle Powers of X or 10 , if we affume proper Indices.
 $=X^{1,04739,8 c c} \quad 12=X^{1,07998, \text { \&cc. }} 45^{6}=X^{2,65896,8 \text { \&c. }}$ And the like of all other Numbers. Thefe Indices are ufually call'd the Logarithms of the Numbers (or Powers) to which they belong, and are fo many Ordinal Numbers, declaring what Power (in order or fucceffion) any given Number is, of any Root affign'd: And different Scales of Logarithms will be form'd, by afluming different Roots of thofe Scales. But how thefe Indices, Logarithms, or Ordinal Numbers may be conveniently found, our Author will likewife inform us hereafter. All that I intended here was to give a general Notion of them, and to thew their dependance on, and connexion with, the feveral Arithmetical Scales before defcribed.

It is eafy to obferve from the Arenarius of Archimedes, that he had fully confider'd and difcufs'd this Subject of Arithmetical Scales, in a particular Treatife which he there quotes, by the name of his a'paci, or Principles; in which (as it there appears) he had laid the foundation of an Arithmetick of a like nature, and of as large an extent, as any of the Scales now in ufe, even the moft univerfal. It appears likewife, that he had acquired a very general notion of the Doctrine and Ufe of Indices alfo. But how far he had accommodated an Algorithm, or Method of Operation, to thofe his Principles, muft remain uncertain till that Book can be recover'd, which is a thing more to be win'd than expected. However it may be fairly concluded from his great Genius and Capacity, that fince he thought fit to treat on this Subject, the progrefs he had made in it was very confiderable.

But before we proceed to explain our Author's methods of Operation with infinite Series, it may be expedient to enlarge a little farther upon their nature and formation, and to make fome general Reflexions on their Convergency, and other circumftances. Now their formation will be beft explain'd by continual Multiplication after the following manner.

Let the quantity $a+b x+c x^{2}+d x^{3}+e x^{4}$, \&cc. be affumed as a Multiplier, confifting either of a finite or an infinite number of Terms; and let alfo $\frac{p}{q}+x=0$ be fuch a Multiplier, as will give the Root $x=-\frac{p}{q}$. If thefe two are multiply'd together, they will produce $\frac{a p}{q}+\frac{b p+a q}{q} x+\frac{c p+b q}{q} x^{2}+\frac{d p+c q}{q} x^{3}+\frac{e p+d q}{q} x^{4}, \delta c c$.
$=0$; and if inftead of x we here fubflitute its value - $\frac{t}{q}$, the Series will become $\frac{a p}{q}-\frac{b p+a q}{q} \times \frac{p}{q}+\frac{c p+b q}{q} \times \frac{p^{2}}{q^{2}}-\frac{d p+c q}{q} \times \frac{p^{3}}{q^{3}}+\frac{c p+d q}{q} \times \frac{p^{4}}{q^{4}}$, \&uc. $=0$; or if we divide by $\frac{p}{q}$, and tranfpofe, it will be $\frac{b_{p}+a q}{q}$ $\frac{p p+b q}{q} \times \frac{p}{q}+\frac{d p+c q}{q} \times \frac{t^{2}}{q^{2}}-\frac{e p+d q}{q} \times \frac{t^{3}}{q^{3}}, 8 c c=a:$ which Series, thus derived, may give us a good infight into the nature of infinite Series in general. For it is plain that this Series, (even though it were continued to infinity,) muft always be equal to a, whatever may be fuppofed to be the values of $p, q, a, b, c, d, \& \in c$. For $\frac{p}{q}$, the firft part of the firft Term, will always be removed or deftroy'd by its equal with a contrary Sign, in the fecond part of the fecond Term. And $\frac{p}{q} \times \frac{p}{q}$, the firft part of the fecond Term, will be removed by its equal with a contrary Sign, in the fecond part of the third Term, and fo on: So as finally to leave $\frac{a q}{q}$, or a, for the Aggregate of the whole Series. And here it is likewife to be obferv'd, that we may ftop whenever we pleafe, and yet the Equation will be good, provided we take in the Supplement, or a due part of the next Term. And this will always obtain, whatever the nature of the Series may be, or whether it be converging or diverging. If the Series be'diverging, or if the Terms continually increafe in value, then there is a neceflity of taking in that Supplement, to preferve the integrity of the Equation. But if the Series be converging, or if the Terms continually decreafe in any compound Ratio, and therefore finally vanifh or approach to nothing; the Supplement may be fafely neglected, as vanifhing alfo, and any number of Terms may be taken, the more the better, as an Approximation to the Quantity a. And thus from a due confideration of this fictitious Series, the nature of all converging or diverging Series may eafily be apprehended. Diverging Series indeed, unlefs when the afore-mention'd increafing Supplement can be affign'd and taken in, will be of no fervice. And this Supplement, in Series that commonly occur, will be generally fo entangled and complicated with the Coefficients of the Terms of the Series, that altho' it is always to be underfood, neverthelefs, it is often impoffible to be extricated and affign'd. But however, converging Series will always be of excellent ufe, as affording a convenient Approximation to the quantity required, when it cannot be otherwife exhibited. In thefe the Supplement aforefaid,
tho' generally inextricable and unafigmable, yet continually decreafes along with the Terms of the Series, and finally becomes lefs than any aflignable Quantity.

The. fame Quantity may often be exhibited or exprefs'd by feveral converging Series; but that Series is to be moft cfteem'd that has the greateft Rate of Convergency. The foregoing Series will converge fo much the fafter, creteris paribus, as p is lefs than q, or as the Fraction $\frac{p}{q}$ is lefs than Unity. For if it be equal to, or greater than Unity, it may become a diverging Series, and will diverge fo much the fafter, as p is greater than q. The Coefficients will contribute little or nothing to this Convergency or Divergency, if they are fuppos'd to increafe or decreafe (as is generally the cafe) rather in a fimple and Arithmetical, than a compound and Geometrical Proportion. To make fome Eftimate of the Rate of Convergency in this Series, and by analogy in any other of this kind, let k and l reprefent two Terms indefinitely, which immediately fucceed each other in the progreffion of the Coefficients of the Multiplier $a+$ $b x+c x^{2}+d x^{3}, \& c$. and let the number n reprefent the order or place of k. Then any Term of the Series indefinitely may be reprefented by $\pm \frac{\langle q+k q}{q^{n}} f^{n-r}$; where the Sign muft be + or - , according as n is an odd or an even Number. Thus if $n=1$, then $k=a, l=b$, and the firf Term will be $+\frac{b p+a q}{q}$. If $n=2$, then $k=b, l=c$, and the fecond Term will be $\frac{q+t q}{q^{2}} p$. And fo of the reft. Alfo if m be the next Tem in the aforefaid progreffion after l, then $\pm \frac{p+q q}{q^{n}} p^{n-s} \mp \frac{m p+l}{q^{n+1}} p^{n}$ will be any two fucceffive Terms in the fame Series. Now in order to a due Conver gency, the former Term abfolutely confider'd, that is fetting afide the Signs, fhould be as much greater than the fucceeding Term, as conveniently may be. Let us fuppore therefore that $\frac{p_{p}+k_{p}}{q^{n}} p^{n-1}$ is greater than $\frac{m p+l}{q^{n+1}} p^{n}$, or (dividing all by the common factor $\frac{q^{n}}{q^{n}}$,) that $\frac{p+k q}{p}$ is greater than $\frac{m p+l q}{q}$, or (multiplying both by $p q$) that $l p q+k q^{2}$ is greater than $m p^{2}+l p q$, or (taking away the common $\left(p q\right.$, that $k q^{2}$ is greater than $m f^{2}$, or (by a farther Divifion,) that $\frac{k}{m} \times \frac{y^{2}}{f^{2}}$ is greater than unity ; and as much greater as may be.

This will take effect on a double account ; firft, the greater k is in refpect of m, and fecondly, the greater q^{2} is in refpect of p^{2}. Now in the Multiplier $a+b x+c x^{2}+d x^{3}, \& c$. if the Coefficients a, b, c, \&xc. are in any decreafing Progreffion, then k will be greater than l, which is greater than m; fo that a fortiori k will be greater than m. Alio if q be greater than p, and therefore (in a duplicate ratio) q^{2} will be greater than f^{2}. So that (cceteris paribus) the degree of Convergency is here to be eftimated, from the Rate according to which the Coefficients $a, b, c, \& x c$. continually decreafe, compounded with the Ratio, (or rather its duplicate,) according to which q thall be fuppos'd to be greater than p.

The fame things obtaining as before, the Term $\bar{F} \frac{l p^{n}}{q^{n}}$ will be what was call'd the Supplement of the Series. For if the Series be continued to a number of Terms denominated by n, then inftead of all the reft of the Terms in infinitum, we may introduce this Supplement, and then we fhall have the accurate value of a, inftead of an approximation to that value. Here the firft Sign is to be taken if n is an odd number, and the other when it is even. Thus if $n=\mathrm{r}$, and confequently $k=a$, and $l=b$, we hall have $\frac{b_{1}+a q}{q}$ - $\frac{b p}{q}=a$. Or if $n=2$, and $l=c$, then $\frac{b p+a q}{q}-\frac{q+b q}{q} \times \frac{p^{q}}{q}+$ $\frac{q^{2}}{q^{2}}=a$. Or if $n=3, l=d$, then $\frac{b p+a_{q}}{q}-\frac{q p+z_{q}}{q} \times \frac{p}{q}+\frac{d_{j}+c q}{q}$ $\times \frac{y^{2}}{4^{2}}-\frac{d^{3}}{4^{3}}=a$. And fo on. Here the taking in of the Supplement always compleats the value of a, and makes it perfect, whether the Series be converging or diverging ; which will always be the beft way of proceeding, when that Supplement can readily be known. But as this rarely happens, in fuch infinite Series as generally occur, we muft have recourfe to infinite converging Series, wherein this Supplement, as well as the Terms of the Series, are infinitely diminifh'd; and therefore after a competent number of them are collected, the reft may be all neglected in infinitum.

From this general Series, the better to affift the Imagination, we will defcend to a few particular Inftances of converging Series in pure Numbers. Let the Coefficients $a, b, c, d, \& c c$, be expounded by $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, Exc. reipectively ; then $\frac{\frac{1}{2} p+q}{q}-\frac{\frac{1}{2}+\frac{1}{2} \eta}{q} \times \frac{p}{q}+\frac{\frac{3}{2}+\frac{1}{9} p}{q} \times$ $\frac{i^{2}}{q^{2}}, 8 \mathrm{Ec}=\mathrm{I}$, or $\frac{p+2 q}{2 q}-\frac{2 p+3 q}{2 \times 3 q} \times \frac{p}{q}+\frac{q}{}+\frac{3 i+1 q}{3 \times 4 q} \times \frac{q}{\frac{7}{2}^{2}}-\frac{4 p+5 q}{4 \times 5 q} \times \frac{i^{q}}{4^{3}}, 8 \mathrm{sc}$. q I . That the Series hence arifing may converge, make p lefs than
than q in any given ratio, fuppofe $\frac{p}{q}=\frac{1}{2}$, or $p=1, q=2$, then $\frac{5}{4}-\frac{2}{3} \times \frac{1}{2}+\frac{1}{2} \frac{1}{4} \times \frac{1}{4}-\frac{7}{2} \times \frac{1}{5}$, \&c. $=\mathrm{I}$. That is, this Series of Fractions, which is computed by Binary Arithmetick, or by the Reciprocals of the Powers of Two, if infinitely continued will finally be equal to Unity. Or if we defire to ftop at thefe four Terms, and inftead of the reft ad infinitun if we would introduce the Supplement which is equivalent to them, and which is here known to be $\frac{1}{3} \times \frac{1}{26}$, or $\frac{1}{50}$, we fhall have $\frac{5}{4}-\frac{1}{8}+\frac{1}{9} \frac{1}{6}-\frac{7}{60}+$ $\frac{\mathrm{r}}{\mathrm{B}^{\circ}}=\mathrm{I}$, as is eafy to prove. Or let the fame Coefficients be expounded by $\mathrm{r},-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}$, icc. then it will be $\frac{29-p}{21}+\frac{39-2 p}{2 \times 39}$ $\times \frac{p}{q}+\frac{4 q-3 p}{3 \times 4 q} \times \frac{t^{2}}{q^{2}}+\frac{5 q-4 p}{4 \times 5 q} \times \frac{t^{3}}{5^{3}}, \delta x c_{0}=1$. This Series may either be continued infinitely, or may be fum'd afier any number of Terms exprefs'd by n, by introducing the Supplement $\frac{+p^{n}}{\overline{n+1} \times 1^{n}}$ inftead of all the reft. Or more particularly, if we make $q=5 p$, then $\frac{9}{2 \times j}+$ $\frac{13}{6 \times 5^{2}}+\frac{17}{12 \times 5^{3}}+\frac{21}{20 \times 5^{4}}+\frac{25}{30 \times 5^{5}}$, $8 \mathrm{cc}=1$, Fihhich is a Number exprefs'd by Quinary Arithmetick. And this is eafily reduced to the Decimal Scale, by writing $\frac{2}{10}$ for $\frac{7}{5}$, and reducing the Cocfficients; for then it will become 0,99999, \&cc. $=\mathrm{r}$. Now if we take thefe five Terms, together with the Supplement, we fhall have exactly $\frac{9}{2 \times 5}+\frac{13}{6 \times j^{2}}+\frac{17}{12 \times 5^{3}}+\frac{21}{20 \times 5^{4}}+\frac{25}{30 \times 5^{5}}+\frac{1}{6 \times j^{5}}=1$. Again, if we make here $3 q==100 p$, we fhall have the Series $\frac{200-3}{1 \times 2} \times \frac{1}{100}+$ $\frac{300-6}{2 \times 3} \times \frac{3}{10000}+\frac{400-9}{3 \times+} \times \frac{9}{1000000}+\frac{500-12}{4 \times 3} \times \frac{27}{100000000}, \delta \mathrm{cc}=\mathrm{I}$, which converges very faft. And if we would reduce this to the regular Decimal Scale of Arithmetick, (which is always fuppos'd to be done, before any particular Problem can be faid to be complatly folved,) we muft fet the Terms, when decimally reduced, orderly under one another, that their Amount or Aggregate may be difcover'd; and then they will fland as in the Margin. Here the Aggregate of the firft five Terms is $0,99999999595,0,985$ which is a near Approximation to the Amount of the whole infinite Series, or to Unity. And if, for prooffake, we add to this the Supplement $\frac{+p^{n}}{\overline{n+1} q^{\prime \prime}}=\frac{15}{0_{2}^{5}} \frac{15995}{0.4, y 59599595} 405$ $=0,00000000405$, the whole will be Unity exactly.

$$
1,00000-0.000
$$

There

There are alfo other Methods of forming converging Series, whether general or particular, which fhall approximate to a known quaniity, and therefore will be very proper to explain the nature of Convergency, and to fhew how the Supplement is to be introduced, when it can be done, in order to make the Series finite; which of late has been calld the Summing of a Series. Let A, B, C, D, E, Esc. and $a, b, c, d, e, \& c c$. be any two Progreffions of Terms, of which A is to be exprefs'd by a Series, either finite or infnite, compos'd of itfelf and the other Terms. Suppofe therefore the firft Term of the Series to be a, and that p is the fupplement to the value of a. Then is $A=a+p$, or $p=\frac{A-a}{1}$. As this is the whole Supplement, in order to form a Series, I fhall only take fuch a part of it as is denominated by the Fraction $\frac{b}{B}$, and put q for the fecond Supplement. That is, I will affume $\frac{A-a}{1}=(p \Rightarrow) \frac{A-a}{1} \times \frac{b}{B}+q$, or $q=\left(\frac{A-a}{1} \times I-\frac{b}{B}=\right) \frac{A-a}{B} \times \frac{B-b}{1}$. Again, as this is the whole value of the Supplement q, I fhall only affume fuch a part of it as is denominated by the Fraction $\frac{c}{\mathrm{C}}$, and for the next Supplement put r. That is, $\frac{A-a}{B} \times \frac{B-b}{\mathrm{I}}=(q=) \frac{A-a}{B} \times \frac{B-b}{C} c+r$, or $r=\left(\frac{A-a}{B} \times\right.$ $\frac{B-b}{I} \times I-\frac{c}{C}=\int \frac{A-a}{B} \times \frac{B-b}{C} \times \frac{C-c}{\mathrm{C}}$. Now as this is the whole value of the Supplement r, Ionly affume fuch a part of it as is denominated by the Fraction $\frac{d}{\nu}$, and for the next Supplement put s. That is, $\frac{A-a}{B}$ $\times \frac{\mathrm{B}-b}{\mathrm{C}} \times \frac{\mathrm{C}-\mathrm{c}}{\mathrm{c}}=(r=) \frac{\mathrm{A}-a}{\mathrm{~B}} \times \frac{\mathrm{B}-b}{\mathrm{C}} \times \frac{\mathrm{C}-\mathrm{c}}{\mathrm{D}} d+s$, or $s=\frac{\mathrm{A}-a}{\mathrm{~B}} \times$ $\frac{B-b}{C} \times \frac{C-C}{I} \times \overline{I-\frac{d}{D}}=\frac{A-a}{B} \times \frac{B-b}{C} \times \frac{C-C}{D} \times \frac{D-d}{1}$. And fo on as far as we pleafe. So that at laft we have the value of $\mathrm{A}=a+p$, where the Supplement $p=\frac{A-a}{B} b+q$, where the fecond Supplement $q=\frac{A-a}{B} \times \frac{B-b}{C} c+r$, where $r=\frac{A-a}{B} \times \frac{B-b}{C} \times \frac{C-c}{D} d+s$, where $s=\frac{\mathrm{A}-a}{\mathrm{~B}} \times \frac{\mathrm{B}-b}{\mathrm{C}} \times \frac{\mathrm{C}-c}{\mathrm{D}} \times \frac{\mathrm{D}-d}{\mathrm{E}} e+t$. And fo on ad infinitum. That is finally $A=a+\frac{A-a}{B} b+\frac{A-a}{B} \times \frac{B-b}{C} c+\frac{A-a}{B} \times \frac{B-b}{C} \times \frac{C-c}{D} d$ $+\frac{A-a}{B} \times \frac{B-b}{C} \times \frac{C-c}{D} \times \frac{D-d}{E} e$, \&c. where $A, B, C, D, E, \mathcal{E}^{\circ} c$. and a, b, c, d, e, \&cc. may be any two Progreffions of Numbers whatever, whether regular or defultory, afcending or defcending. And when
it happens in thefe Progreflions, that either $\mathrm{A}=a$, or $\mathrm{B}=b$, or $\mathrm{C}=c$, se. then the Series terminates of itfulf, and exhibits the value of A in a finite number of Terms: But in other cafes it approximates indefinitely to the value of A . But in the cafe of an infinite Approximation, the faid Progreffions ought to proceed regularly, according to fome fated Law. Here it will be eafy to obferve, that if K and k are put to reprefent any two Terms indefinitely in the aforefaid Progreffions, whofe places are denoted by the number n, and if L and l are the Terms immediately following; then the Term in the Series denoted by $n+1$ will be form'd from the preceding Term, by multiplying it by $\frac{K-k}{n L} l$. As if $n=1$, then $\mathrm{K}=\mathrm{A}, k=a, \mathrm{~L}=\mathrm{B}, l=b$, and the fecond Term will be $a+\frac{\mathrm{A}-a}{a \mathrm{~B}} b=\frac{\mathrm{A}-a}{\mathrm{~B}} b$. If $n=2$, then $\mathrm{K}=\mathrm{B}, k=b, \mathrm{~L}=\mathrm{C}$, $l=c$, and the third Term will be $\frac{A-a}{B} b \times \frac{B-b}{b C} c=\frac{A-a}{B} \times \frac{B-b}{C} c$; and fo of the reft. And whenever it hall happen that $L=l$, then the Series will ftop at this Term, and proceed no farther. And the Series approximates fo much the fafter, coteris paribus, as the Numbers A, B, C, D, E_{c}. and $a, b, c, d, \& c$. approach nearer to each other refpectively.

Now to give fome Examples in pure Numbers. Let A, B, C, D, $\&_{c} c=2,2,2,2, \& c$. and $a, b, c, d, \& c .=1,1,1,1, E_{c} c$. then we fla:ll have $2=I+\frac{1}{2}+\frac{1}{4}+\frac{5}{8}+\frac{1}{16}$, छcc. And fo always, when the given Progreffions are Ranks of equals, the Series will be a Gcanetrieal Progreffion. If we would have this Progreffion ftop at the next Term, we may either fuppofe the firf given Progreflion to be $2,2,2,2,2,1$, or the fecond to be $1,1,1,1,1,2$, 'tis all one which. For in either cafe we fhall have $\mathrm{L} \xlongequal[=]{\mathrm{F}}$, that is $\mathrm{F}=f$, and therefore the laft Term muft be multiply'd by $\frac{\mathrm{K}-k}{k}$, or $\frac{\mathrm{E}-\epsilon}{\epsilon}=\mathrm{I}$. 'Then the Progreffion or Series becomes $2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{1} \frac{1}{6}$ + $\frac{1}{5}$. Again, if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \delta^{\circ} c$. $=5,5,5,5, \delta^{2} c$. and a, b, c, d, \&cc. $=4,4,4,4, \& \mathrm{cc}$. then $5=4+\frac{4}{5}+\frac{{ }^{4}}{2^{5}}+T^{\frac{4}{2}}{ }^{5}+8^{\frac{4}{2}} 5$, \&x. or $\frac{1}{4}=\frac{1}{5}+\frac{8}{2} \frac{1}{2}+\frac{1}{\frac{1}{2} 5}+\frac{1}{5} \frac{1}{2}$, \& C . Or if A, B, C, D, \&x. $=4$, $4,4,4$, \&ic. and $a, b, c, d, \& c c=5,5,5,5, \& x c$. then $4=5$ -$\frac{5}{4}+\frac{5}{16}-\frac{5}{8} 4-1-\frac{5}{2} \sigma$, \&c. If $A, B, C, D, \& c=5,5,5,5$, \&cc. and $a, b, c, d^{4}, \& x c=6,7,8,9$, \&uc. then $5=6-\frac{1}{5} 7+\frac{1}{5} \times \frac{2}{5} 8$ $-\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} 9+\frac{5}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} 10$, \&xe. If we would have the Series ftop here, or if we would find one more Term, or Supplement, which flaould be equivaicnt to all the reft ad infinitum, (which in-
deed might be defirable here, and in fuch cafes as this, becaufe of the flow Convergency, or rather Divergency of the Series,) fuppofe $F=f$, and therefore $\frac{E-c}{e}=\frac{5-10}{10}=-\frac{1}{2}$ muft be multiply'd by the luft Term. So that the Series becomes $5=6-\frac{1}{5} 7+\frac{1}{5} \times \frac{2}{5} 8-\frac{1}{5} \times \frac{2}{5}$ $\times \frac{3}{5} 9-1-\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} 10-\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} 5$. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, 8 \mathrm{Ec} .=2$, $3,4,5, \& x$. and $a, b, c, d, 8 x c$. $=1,2,3,4,8 c c$. then $2=1+$ $\frac{1}{3} 2+\frac{1}{3} \times \frac{1}{4} 3+\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} 4+\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times \frac{1}{6} 5,8 c \mathrm{c}$. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{i}_{2} \mathrm{cc}$. $=I, 2,3,4$, \&xc. and $a, b, c, d, 8 \pi c .=2,3,4,5,8 \pi c$. thien $I=$ $2-\frac{1}{2} 3+\frac{1}{2} \times \frac{1}{3} 4-\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} 5+\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{3} 6$, Ecc. And from this general Senes may infinite other particular Series be eafily derivce, which thall perpetually converge to given Quantities; the chief ufe of which Speculation, I think, will be, to fhew us the nature of Convergency in general.

There are many other fuch like general Series that may be readily form'd, which flatl converge to a given Number. As if I would conftruat a Series that fhali converge to Unity, I fet down I, together with a Rank of Fractions, both negative and affirmative, as here follows.

$$
\begin{aligned}
& 1-\frac{a}{A}-\frac{b}{B}-\frac{c}{C}-\frac{d}{D}-\frac{e}{E}, \delta c c . \\
& \frac{+\frac{a}{A}+\frac{b}{B}+\frac{c}{C}+\frac{d}{D}+\frac{e}{E}, \delta c c .}{\frac{A+a}{A}+\frac{A b-B a}{A B}+\frac{B-C}{B C}+\frac{c-}{C D}+\frac{D_{e}-E d}{D E}, \& C C=1} .
\end{aligned}
$$

Then proceeding obliquely, I collect the Terms of each Series together, by adding the two firft, then the two fecond, and fo on. So that the whole Series thus conftructed muft neceffirily be equal to Unity; which alfo is manifent by a bare Infpection of the Series. From this Series it is eafy to defcend to any number of particular Cafes. As if we make $A, B, C, D, \& \% c=2,3,4,5, \& c$. and a, b, $c, d, \delta \mathrm{cc}=\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \& x \mathrm{c}$. then $\frac{3}{2}-\frac{1}{2 \times 3}-\frac{1}{3 \times+}-\frac{1}{4 \times 5}-\frac{1}{5 \times 6}$, $\& \mathrm{c} .=\mathrm{I}$. Or $\frac{1}{2}=\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\frac{1}{5 \times 0}$, \&cc. And fo in all other Cafes. The Series will ftop at a finite number of Terms, whenfoever you omit to take in the firft part of the Numerator of any Term. As here $\frac{3}{2}-\frac{1}{2 \times 3}-\frac{1}{3 \times 4}-\frac{1}{4 \times 5}-\frac{1}{5 \times 0}-\frac{1}{0}=1$.

Lafly, to conftuct one more Series of this kind, which flatl converge to Unity; I fet down I, with a Rank of Fractions along with
with it, both affirmative and negative, luich as are feed here below; which being added together obliquely as before, will produce the following Series.

$$
\begin{aligned}
& \mathrm{I}+\frac{a}{\mathrm{~A}}+\frac{a b}{\mathrm{AB}}+\frac{a b c}{\mathrm{ABC}}+\frac{a b c d}{\mathrm{ABCD}}+\frac{a b c d e}{\mathrm{ABCDE}}, \delta c \mathrm{c} \\
& \frac{-\frac{a}{\mathrm{~A}}-\frac{a^{3}}{\mathrm{AB}}-\frac{a b c}{\mathrm{ABC}}-\frac{a b c d}{\mathrm{AB-1}}-\frac{a b c d e}{\mathrm{ABCDE}}, \& c .}{\frac{\mathrm{A}-a}{\mathrm{~A}}+\frac{\mathrm{L}-b}{\mathrm{AB}} a+\frac{\mathrm{C}-c}{\mathrm{ABC}} a b+\frac{\mathrm{D}-d}{\mathrm{AB-D}} a b c+\frac{\mathrm{E}-c}{\mathrm{AB-DE}} a b c d, \& c .=1}
\end{aligned}
$$

This Series may be made to Atop at any finite number of Terms, if you omit to take in the latter part of the Binomial in any Term. Or you may derive particular Series from it, which shall have any Rate of Convergency.

For an Example of this Series, make A, B, C, D, \&cc. $=3,3$, 3, 3 , \&ce. and a, b, c, d, \& c. $=1$, I , I, I, \&ce. then $\frac{2}{3}+\frac{2}{9}+\frac{2}{2} \frac{2}{7}+\frac{2}{8} \frac{1}{5}$, \&cc. $=1$, or $\frac{1}{3}+\frac{1}{9}+\frac{1}{2} \frac{1}{7}+\frac{1}{8} T$, \&cc. $=\frac{1}{2}$. And whenever A, B, C, Exc. and a, b, c, \&c. are Ranks of Equals, the Series will be a Geometrical Piogreffion.

Again, make A, B, C, D, Sec. $=2,3,4,5, \& c c$. and $a, b, c, d, \& c$. $=\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}$, \& C . then $\frac{3}{2}+\frac{2}{2 \times 3}+\frac{3}{2 \times 3 \times 4}+\frac{4}{2 \times 3 \times 4 \times 5}+\frac{5}{2 \times 3 \times 4 \times 5 \times 6}$, $\varepsilon x c=1$. Or in a finite number of Terms $\frac{x}{2}+\frac{1}{3}+\frac{1}{2 \times 4}+\frac{1}{2 \times 3 \times 5}$ $+\frac{1}{2 \times 3 \times 4 \times 5}=1$. And the like may be obferved of others in an infinite variety.

And thus having prepared the way for what follows, by explaining the nature of infinite Series in general, by difcovering their origin and manner of convergency, and by hewing their connexion with our common Arithmetick; I hall now return to our Author's Mcthods of Operation, or to the Reduction of compound Quantities to Such infinite Series.

> Sect. II. The Refolution of simple Equations, or pure Powers, by Infurile Series.
3.4. $\mathrm{THE}^{\mathrm{H}}$ Author begins his Reduction of compound Runtitis, to an equivalent infinite Series of fimple Terms, first by the wi' g how the Process may be performed in Divifion. Now in his Example the manner of the Operation is thus, in mistation
tation of the ufual praxis of Divifion in Numbers. In order to obtain the Quotient of aa divided by $b+x$, or to refolve the compound Fraction $\frac{a a}{b+x}$ into a Series of fimple Terms, firft find the Quotient of aa divided by b, the firf Term of the Divifor. This is $\frac{a \pi}{b}$, which write in the Quote. Then multiply the Divifor by this Term, and fet the Product $a a+\frac{a a r}{b}$ under the Dividend, from whence it muft be fubtracted, and will leave the Remainder - $\frac{a a x}{b}$. Then to find the next Term (or Figure) of the Quotient, divide the Remainder by the firft Term of the Divifor, or by b, and put the Quotient - $\frac{\text { aax }}{l^{2}}$ for the fecond Term of the Quote. Multiply the Divifor by this fecond Term, and the Product - $\frac{a a x}{b}-\frac{a a x x}{b b}$ fet orderly under the laft Remainder; from whence it muft be fubtracted, to find the new Remainder $+\frac{a a x x}{b 6}$. Then to find the next Term of the Quotient, you are to proceed with this new Remainder as with the former; and fo on in infinitum. The Quotient therefore is $\frac{a^{2}}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}-\frac{a^{2} x^{3}}{b^{4}}$, \&cc. (or $\frac{a^{2}}{b}$ into 1 -$\frac{x}{b}+\frac{x^{2}}{b^{2}}-\frac{x^{3}}{b^{3}}, \delta x c$.) So that by this Operation the Number or Quantity $\frac{a a}{b+x}$, (or $a^{2} \times\left.\overline{b+x}\right|^{-1}$) is reduced from that Scale in Arithmetick whofe Root is $b+x$, to an equivalent Number, the Root of whofe Scale, (or whofe converging quantity) is $\frac{x}{6}$. And this Number, or infinite Scries thus found, will converge fo much the fafter to the truth, as b is greater than x.

To.apply this, by way of illuftration, to an inftance or two in common Numbers. Suppofe we had the Fraction $\frac{5}{7}$, and would reduce it from the feptenary Scale, in which it now appears, to an equivalent Series, that thall convergc by the Powers of 6 . Then we flall have $\frac{x}{7}=\frac{1}{6+1}$; and therefore in the foregoing general Fraction $\frac{a a}{b+x}$, make $a=1, b=6$, and $x=1$, and the Series will become $\frac{1}{6}-\frac{1}{6^{2}}+\frac{1}{63}-\frac{1}{64}$, \&cc. which will be equivalcnt to \div Or if we would reduce it to a Series converging by the Powers of 8 , becaufe $\frac{1}{7}=\frac{1}{8-1}$, make $\dot{a}=\mathrm{I}, b=8$, and $x=-\mathrm{I}$, then
then $\frac{1}{7}=\frac{1}{8}+\frac{1}{8^{2}}+\frac{1}{8^{3}}+\frac{1}{5^{4}}$, \&c. which Series will converge fafter than the former. Or if we would reduce it to the common Denary (or Decimal) Scale, becaufc $\frac{1}{7}=\frac{1}{10-3}$, make $a=1, b=10$, and
 $=0,1428$, \&c. as may be cafily collected. And hence we may obferve, that this or any other Fraction may be reduced a great variety of ways to infinite Series; but that Series will converge fafteft to the truth, in which b fhall be greateft in refpect of x. But that Series will be mof eafily reduced to the common Arithmetick, which converges by the Powers of 10 , or its Multiples. If we fhould here refolve 7 into the parts $3+4$, or $2+5$, or $1+6$, Eic. inftead of converging we fhould have diverging Series, or fuch as require a Supplement to be takcn in.
And we may here farther oblerve, that as in Divifion of common Numbers, we may ftop the procefs of Divifion whenever we pleafe, and imftend of all the reft of the Figures (or Terms) ad infinitum, we may write the Remainder as a Numcrator, and the Divifor as the Denominator of a Fraction, which Fraction will be the Supplement to the Quotient : fo the fame will obtain in the Divifion of Species. Thus in the prefent Example, if we will ftop at the firft Term of the Quotient, we fhall have $\frac{a a}{b+x}=\frac{a a}{b}-\frac{a a x}{b \times \overline{b+x}}$. Or if we will ftop at. the fecond Term, then $\frac{a a}{b+x}=\frac{a a}{b}-\frac{a a x}{b^{2}}+$ $\frac{a^{2} x^{2}}{b^{3}+b^{2} x}$. Or if we will fop at the third Term, then $\frac{a a}{b+x}=\frac{a a}{b}-$ $\frac{a \operatorname{ax}}{l^{2}}+\frac{a a x^{2}}{l^{2}}-\frac{a^{2} x^{3}}{l^{4}+b_{x} x}$. And fo in the fucceeding Terms, in which thefe Supplements may always be introduced, to make the Qinotient compleat. This Obfervation will be found of good ufe in fome of the following Speculations, when a complicate Fraction is not to be intirely refolved, but only to be deprefs'd, or to be reduced to a fimpler and more commodious form.

Or we may hence change Divifion into Multiplication. For having found the firft Term of the Quotient, and its Supplement, or the Equation $\frac{a \pi}{b+x}=\frac{a a}{b}-\frac{a a x}{b^{2}+t x}$; multiplying it by $\frac{\kappa}{b}$, we fhall have $\frac{a a x}{l^{2}+b x}=\frac{a a x}{l^{2}}-\frac{a^{2} x^{2}}{b^{3}+b^{2} x}$, fo that fubftituting this value of $\frac{a a x}{b^{2}+b x}$ in the firft Equation, it will become $\frac{a a}{b+x}=\frac{a a}{b}-\frac{a a x}{b^{2}}+$ $\frac{a^{2}, 2^{2}}{b^{3}+b^{2} x}$, where the two firf Terms of the Quotient are now known.

Multiply this by $\frac{x^{2}}{b^{2}}$, and it will become $\frac{a^{2} x^{2}}{b^{3}+b^{2} x}=\frac{a^{2} x^{2}}{b^{2}}-\frac{a^{2}+\frac{1}{3}}{b^{4}}+$ $\frac{a^{2}, 4}{b^{5}+14 v}$, which being fubflituted in the laft Equation, it will become $\frac{a x}{d+x}=\frac{a a}{b}-\frac{a a x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}-\frac{a^{2} \times 3^{3}}{d 4}+\frac{a^{2} \times 4}{b^{5}+4 x x}$, where the four firt Terms of the Quotient are now known. Again, multiply this Equation by $\frac{x^{4}}{b^{4}}$, and it will become. $\frac{a x, 4}{b^{5}+64 x}=\frac{a^{2} \times 4}{b^{5}}-\frac{a^{2} \times 5}{b^{6}}+\frac{a^{2} \alpha^{6}}{b^{6}}$ $-\frac{a^{2} x^{7}}{b^{8}}+\frac{a^{2} x^{8}}{c^{9}+b^{8} x}$, which being fubfituted in the laft Equation, it will become $\frac{a a}{b+x}=\frac{a^{2}}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}-\frac{a^{2} \times 3}{14}+\frac{a^{2} \times 4}{b^{5}}-\frac{a^{2} x^{5}}{b^{6}}+$ $\frac{a^{2} x^{6}}{b^{6}}-\frac{a^{2} x^{7}}{b^{8}}+\frac{a^{2} x^{8}}{19+z^{8} x}$, where eight of the firf Terms are now known. And fo every fucceeding Operation will double the number of Terms, that were tefore found in the Quotient.
This method of Reduction may be thus very conveniently imitated in Numbers, or we may thus change Divifion into Multiplieation. Suppofe (for inftance). I would find the Reciprocal of the Prime Number 29, or the value of the Fraction $\frac{-1}{2}$, in Decimal Numbers. I divide $1,0000, \mathcal{O C}$. by 29 ; in the common way, fo far as to find two or three of the firft Figures, or till the Remainder becomes a fingle Figure, and then I affume the Supplement to compleat. the Quotient. Thus I hall have $\frac{-}{20}=0,03448^{\frac{8}{2}}$, for the compleat Quotient, which Equation if I multiply by the Numerator 8, it will. give $\frac{8}{29}=0,27584 \frac{64}{2} \frac{4}{9}$, or rather $\frac{8}{5}=0,27,586 \frac{6}{2} \frac{6}{9}$. I fubftitute this initead of the Fraction in the firft Equation, and I fhall have $\frac{1}{3}=0,0344827586 \frac{6}{\frac{6}{9}}$. Again, I multiply this Equation by 6, and it will give $\frac{6}{25}=0,2068965517 \frac{1}{\frac{1}{5},}$, and then by Subfitution $\frac{1}{4} \frac{1}{5}=$ $0,03448275862068965517 \frac{1}{2} 9$. Again, I multiply this Equation by 7, anditbecomes $\frac{7}{2}=0,24137931034482758620 \frac{2}{2} \frac{2}{9}$, and then bySubftitution ${ }^{\frac{1}{2}}=00,0344827586206896551724137931034482758620 \frac{20}{3} \frac{0}{9}$, where every Operation will at leaft double the number of Figures found by the preceding Operation. And this will be an eafy Expedient for converting Divifion into Multiplication in all Cafes, For the Reciprocal of the Divifor being thus found, it may be multiply'd into the Dividend to produce the Quotient.
Now as it is here found, that $\frac{a a}{b+x}=\frac{a a}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b 3}-\frac{a^{2} \times 3}{b 4}$, $\& c$. which Series will converge when b is greater than x; fo when it happens to be otherwife, or when x is greater than b, that the Powers of x may be in the Denominators we muft have recourfe to the
the other Cafe of Divifion, in which we fhall find $\frac{a a}{x+b}=\frac{a a}{x}$ $\frac{a^{2} b}{x^{2}}+\frac{a^{2} b^{2}}{x^{3}}-\frac{a^{2} b 3}{x^{4}}, \& c c$. and where the Divifion is perform'd as before.

5, 6. In thefe Examples of our Author, the Procefs of Divifion (for the exercife of the Learner) may be thus exhibited:

$$
\begin{aligned}
& \begin{array}{r}
\frac{1+x^{2}}{0-x^{2}+0} \\
\frac{1-x^{2}-x^{4}}{0+x^{4}+0} \\
\frac{0-x^{6}}{0-x^{6}+0} \\
0+x^{8}+x^{8}
\end{array} \\
& \begin{array}{l}
\frac{2 x^{\frac{2}{2}}+2 x-6 x^{\frac{3}{2}}}{-2 x+5 x^{\frac{3}{2}}} \\
+2 x^{\frac{3}{2}}+6 x^{2} \\
+7 x^{\frac{3}{2}}-6 x^{2} \\
+7 x^{\frac{3}{2}}+-x^{2}-21 x^{\frac{1}{2}}
\end{array}
\end{aligned}
$$

Now in order to a due Convergency, in each of thefe Examples, we muft fuppofe x to be lefs than Unity; and if x be greater than Unity, we muft invert the Terms, and then we fhall have $\frac{1}{x_{x}+1}$
 $\frac{14}{27 x^{\frac{1}{2}}}-\frac{11}{81 x}, \& c c$.
$7,8,9,10$. This Notation of Powers and Roots by integral and fractional, affirmative and negative, general and particular Indices, was certainly a very happy Thought, and an admirable Improvement of Analyticks, by which the practice is render'd eafy, regular, and univeıfal. It was chiefly owing to our Author, at leaft he carried on the Analogy, and made it more general. A Learner fhould be well acquainted with this Notation, and the Rules of its feveral Operations fhould be very familiar to him, or otherwife he will often find himfelf involved in difficulties. I fhall not enter into any farther difcuffion of it here, as not properly belonging to this place, or fubject, but rather to the vulgar Algebra.

Ir. The Author proceeds to the Extraction of the Roots of pure Equations, which he thus performs, in imitation of the ufual Procefs in Numbers. To extract the Square-root of $a a+x x$; firft the Root of $a a$ is a, which muft be put in the Quote. Then the Square of this, or $a a$, being fubtracted from the given Power, leaves $+x x$ for a Refolvend. Divide this by twice the Root, or $2 a$, which is
the firift part of the Divifor, and the Quotient $\frac{x x}{2 a}$ muft be made the fecond Term of the Root, as alfo the fecond Teirm of the Divifor. Multiply the Divifor thus compleated, or $2 a+\frac{x x}{2 a}$, by the fecond Term of the Root, and the Product $x x+\frac{24-}{4 a \alpha}$ muft be fubtracted from the Refolvend. This will leave - $\frac{x_{4}}{4 \alpha^{2}}$ for a new Refolvend, which being divided by the firft Term of the double Root, or $2 a$, will give $-\frac{x^{4}}{8_{4} \mathrm{~s}}$ for the third Term of the Root. Twice the Root before found, with this Term added to it, or $2 a+\frac{x^{2}}{a}-\frac{x^{4}}{8 a^{3}}$, being multiply'd by this Term, the Product $-\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{x^{8}}{64 a^{6}}$. muft be fubtracted from the laft Refolvend, and the Remainder $+\frac{x^{6}}{8,4}$. - $\frac{x^{8}}{0.46}$ will be a new Refolvend, to be proceeded with as before, for finding the next Term of the Root; and fo on as far as you pleafe. So that we flhall have $\sqrt{a a+x x}=a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a_{5}^{5}}$ $-\frac{51^{8}}{128 a^{\circ}}$, \&cc.

It is eafy to obferve from hence, that in thie Operation every new Column will give a new Term in the Quote or Root; and therefore no more Columns need be form'd than it is intended there fhall be Terms in the Root. Or when any number of Terms are thus extracted, as many more may be found by Divifion only. Thus having found the three firft Terms of the Root $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{\delta_{a^{3}}}$, by their double $2 a+\frac{x^{2}}{a}-\frac{x^{4}}{44^{3}}$, dividing the third Remainder or Refolvend $+\frac{x^{6}}{3 c^{4}}-\frac{x^{8}}{6+\alpha^{6}}$, the three firf Terms of the Quotient $\frac{x^{6}}{166^{6}}$. $-\frac{5 x^{8}}{128 a^{7}}+\frac{2 x^{10}}{256 a^{\circ}}$, will be the three fucceeding Terms of the Root.
The Series $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}, \& x$. thus found for the fquareroot of the irrational quantity $a a+x x$, is to be underfood in the following manner. In order to a due convergency a is to be fuppos'd greater than x, that the Root or converging quantity $\frac{x}{a}$ may be lefs than Unity, and that a may be a near approximation to the fquareroot required. But as this is too little, it is enereafed by the finall quantity $\frac{x^{2}}{2 a}$, which now makes it too big. Then by the next Operation

Operation it is diminifh'd by the fill fmaller quantity $\frac{x^{4}}{8 a^{3}}$; which diminution being too much, it is again encreas'd by the very finall quantity $\frac{x^{6}}{18 u^{5}}$, which makes it too great, in order to be farther diminifh'd by the next Term. And thus it proceeds in infinitum, the Augmentations and Diminutions continually correcting one another, till at latt they become inconfiderable, and tili the Series (fo far continued) is a fufficiently near Approximation to the Root required.
12. When a is lefs than x, the order of the Terms muft be inverted, or the fquare-root of $x x+a a$ muft be extracted as before; in which cafe it will be $x+\frac{a a}{2 x}-\frac{a 4}{b x^{3}}$, \&xc. And in this Series the converging quantity, or the Root of the Scale, will be $\frac{a}{x}$. Thefe two Series are by no means to be underftood as the two different Roots of the quantity $a \mathfrak{a}+x x$; for each of the two Series will exhibit thofe two Ronis, by only changing the Signs. But they are accommodated to the two Cifs of Convergency, according as a or x may happen to be the greater quantity.

I fhall here refolve the forgoing Quantity after another manner, the better to prepare the way for what is to follow. Suppofe then $y=a a+x x$, where we may find the value of the Root y by the following Procefo: $y=a a+x x=($ if $y=a+1) a a+2 a p+p p$; or $2 a p+p p=x x=$ (if $p=\frac{x x}{2 a}+q$) $x x+2 a q+\frac{x q}{4 a^{2}}+\frac{x^{2} q}{a}$ $+q q$; or $2 a q+\frac{x^{2} q}{a}+q q=-\frac{24}{4 a^{2}}=$ (if $q=-\frac{x^{4}}{\gamma_{a} 3}+y$) 一 $\frac{x^{4}}{4 a^{2}}+2 a r-\frac{x^{6}}{0 a 4}+\frac{x^{2} r}{a}+\frac{x^{8}}{0+n^{6}}-\frac{x 4 r}{44^{3}}+r^{2}$; or $2 a r+\frac{x x r}{a}-\frac{x 4 r}{4 a^{3}}+$ $r r=\frac{x^{6}}{8{ }_{4}}-\frac{8}{0.4^{6}}=$ (if $r=\frac{x^{6}}{10 \omega^{5}}+j$) Exc. which Procefs may be thus explain'd in words.

In order to find $\sqrt{a a+x x}$, or the Root y of this Equation $y=a a+x x$, fuppore $y=a+p$, where a is to be undertood as a pretty near Approximation to the value of y, the nearer the better,) and p is the imall Supplement to that, or the quantity which makes it compleat. Then by Subtitution is derived the firt Eup. plemental Lquation $2 a p+\hat{p}=x x$, whofe Root p is to he found. Now as 2 " p is mach bigger than $p p$, (for $2 a$ is berger than the Supplement p, we fhall have nearly $p=\frac{x,}{\ldots}$, or at leaft we fhat have exactly $p=\frac{v x}{\alpha}+q$, fuppofing q to reprefent the fecoind Supple.
ment of the Root. Then by Subfitution $2 a q+\frac{x i}{\sigma} q+q q=-$ $\frac{x 4}{4 a^{2}}$ will be the fecond Supplemental Equation, whofe Root q is the fecond Supplement. Therefore $\frac{x x}{a} q$ will be a little quantity, and $q q$ much lefs, fo that we fhall have nearly $q=-\frac{x 4}{863}$, or accurately $q=-\frac{x_{4}}{8 a^{3}}+r$, if \dot{r} be made the third Supplement to the Root. And therefore $2 a r+\frac{x x}{a} r-\frac{x^{4}}{4 a^{3}} r+r^{2}=\frac{2^{6}}{8 \alpha^{4}}-\frac{x^{8}}{44^{4}}$ will be the third Supplemental Equation, whofe Rootis r. And thus we may go on as far as -we pleafe, to form Refidual or Supplemental Equations, whofe Roots will continually grow lefs and lefs, and therefore will make nearer and nearer Approaches to the Root y, to which they always converge. For $y=a+p$, where p is the Root of this Equation $2 a p+p p=x x$. Or $y=a+\frac{x x}{2 a}+q$, where q is the Root of this Equation $2 a q+\frac{x x}{a} q+q q=-\frac{x \psi}{4^{2}}$. Or $y=a+$ $\frac{x x}{2 a}-\frac{x^{4}}{8 a^{3}}+r$, where r is the Root of this Equation $2 a r+\frac{x x}{a} r$ $\frac{x^{4}}{4 a^{3}} r r=\frac{x^{6}}{8 a^{4}}-\frac{x^{8}}{6 a^{6}}$. And fo on. The Refolution of any one of thefe Quadratick Equations, in the ordinary way, will give the refpective Supplement, which will compleat the value of y.

I took notice before, upon the Article of Divifion, of what may be call'd a Comparifon of Quotients; or that one Quotient may be exhibited by the help of another, together with a Series of known or fimple Terms. Here we have an Inftance of a like Comparifon of Roots; or that the Root of one Equation may be exprefs'd by the Root of another, together with a Series of known or fimple Terms, which will hold good in all Equations whatever. And to carry on the Analogy, we Chall hereafter find a like Comparifon of Fluents; where one Fluent, (fuppofe, for inftance, a Curvilinear Area,) will be exprefs'd by another Fluent, together with a Series of fimple Terms. This I thought fit to infinuate here, by way of anticipation, that I might fhew the conftant uniformity and harmony of Nature, in thefe Speculations, when they are duly and regularly purfued.

But I fhall here give, ex abundanti, another Method for this, and fuch kind of Extractions, tho' perhaps it may more properly belong to the Refolution of Affected Equations, which is foon to follow; however it may ferve as an Introduction to their Solution.

The firt Refidual or Supplemental Equation in the foregoing Procefs was $2 a p+p p=x x$, which may be refolved in this manner. Becaufe $p=\frac{x x}{2 a+p^{2}}$, it will be by Divifion $p=\frac{x x}{2 a}-\frac{x^{2} p}{4 a^{2}}+\frac{x^{2} p^{2}}{8 a^{2}}-$ $\frac{x^{2}-3}{10.4}+\frac{x^{2}+4}{32 a^{5}}$ \&c. Divide all the Terms of this Series (except the firfi) by p, and then multiply them by the whole Series, or by the value of p, and you will have $p=\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x 4 p}{8 a^{4}}-\frac{3 x 4 p^{2}}{32 a^{5}}+$ $\frac{x+, 3}{1,6}, \& c$. where the two firft Terms are clear'd of p. Divide all the Terins of this Series, except the two firt, by p, and multiply them by the value of p, or by the firt Series, and you will have a Series for p in which the three firft Terms are clear'd of p. And by repeating the Operation, you may clear as many Terms of p as you pleafe. So that at laft you will have $p=\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}$ $+\frac{7 x^{10}}{25^{24} 0^{3}}$, \&c. which will give the fame value of y as before.
${ }_{13}, 14,15,16,17,18$. The feveral Roots of thefe Examples, and of all other pure Powers, whether they are Binomials, Trinomials, or any other Multinomials, may be extracted by purfuing the Method of the foregoing Procefs, or by imitating the like Praxes in Numbers. But they inay be perform'd much more readily by general Theorenis computed for that purpofe. And as there will be frequent occafion, in the enfuing Treatife, for certain general Operations to be perform'd with infinite Series, fach as Multiplication, Divifion, raifing of Powers, and extracting of Roots; I thall here derive fome Theorems for thofe purpofes.
I. Let $A+B+C+D+E, \& c$. $P+Q+R+S+T, \& c$. and $\alpha+\beta+\gamma+\delta+\varepsilon, \delta c$. reprefent the Terms of three feveral Series refpectively, and let $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$, \&c. into $\mathrm{P}+\mathrm{Q}+\mathrm{R}+\mathrm{S}+\mathrm{T}$, $\&<c$. $=\alpha+\beta+\gamma+\delta+\varepsilon$, \&c. Then by the known Rules of Multip ication, by which every Term of one Factor is to be multiply'd into every Term of the other, it will be $\alpha=A P, \beta=A Q+$ $\mathrm{BP}, \gamma=\mathrm{AR}+\mathrm{BQ}+\mathrm{CP}, \delta=\mathrm{AS}+\mathrm{BR}+\mathrm{CQ}+\mathrm{DP}, \varepsilon=\mathrm{AT}+$ $B S+C R+D Q+E P$; and fo on. Then by Subtitution it will be

And this will be a ready Theorem for the Multiplication of any infinite Series into each other; as in the following Example.
(A) (B)
(C) (D)
(P) (Q)
(S)
$a+\frac{1}{8} x+\frac{x^{2}}{3 a}+\frac{x^{3}}{4 a^{2}}+\frac{x^{4}}{5 a^{3}}$, \&cc. into $a-\frac{1}{3} x+\frac{x^{2}}{5 a}-\frac{x^{3}}{7 a^{2}}+\frac{x^{4}}{9 a^{3}}$, \&xc.

$$
\begin{aligned}
& -\frac{1}{3} a x-\frac{1}{6} x^{2}-\frac{x^{3}}{9 a}-\frac{x^{4}}{12 a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{x^{3}}{7^{3}}-\frac{x^{2}}{14^{42}} \\
& +\frac{x^{4}}{9 a^{2}}
\end{aligned}
$$

And fo in all other cafes.
II. ${ }^{\circ}$ From the fame Equations above we fhall have $A=\frac{\alpha}{P} \cdot{ }^{\circ}$ $B=\frac{B-A Q}{P}, C=\frac{\gamma-B Q-A R}{P}, D=\frac{\delta-C Q-B R-A S}{1}, E=$ $\frac{\varepsilon-\mathrm{DQ}-\mathrm{CR}-\mathrm{BS}-\mathrm{AT}}{\mathrm{P}}, \& \mathrm{Ec}$. And then by Subftitution $\frac{\alpha+3+2+\delta+\varepsilon, \xi_{c}}{1+2+K++T, \xi_{c}}$ $=(A+B+C+D+E, \& C=) \frac{\alpha}{P}+\frac{B-A Q}{P}+\frac{x-D-A R}{P}+$ $\frac{\delta-C Q-B R-A S}{P}+\frac{s-D Q-C R-B S-A T}{P}, \delta x$. This Theorem will ferve commodioully for the Divifion of one infinite Series by another. "Here for conveniency-fake the Capitals A, B, C, D, \&c. are retained in the Theorem, to denote the firft, fecond, third; fourth, \&c. Terms of the Series refpectively.

Thus, for Example, if we would divide the Series ${ }^{(\alpha)} a^{(a)}+\frac{x^{(B)}}{6}(x)+$
 $\frac{x^{2}}{3} \pm x^{2}+\frac{121 x^{3}}{1200 a}+\frac{28124}{1260 a^{2}}, \& \mathrm{xc}$. by the Series $a+\frac{1}{2} x+\frac{x^{2}}{3^{a}}+\frac{x^{3}}{4 a^{2}}+\frac{x_{4}}{5 a^{3}}, \& \mathrm{c}$. the Quotient will be $a+\frac{\frac{1}{a} a x-\frac{1}{2} a \mathrm{~A}}{a}+\frac{\frac{1}{3} \frac{1}{3} x^{2}-\frac{x^{2}}{3 a} \mathrm{~A}-\frac{1}{2} x \mathrm{~B}}{a}+$ $\frac{\frac{121 x^{3}}{126 a^{2}}-\frac{x^{3}}{4 a^{2}} \mathrm{~A}-\frac{x^{2}}{a} \mathrm{~B}-\frac{1}{2} x \mathrm{C}}{a}$, \&cc. Or reftoring the Values of A, B, C, D; \&c. which reprefent the feveral Terms as they ftand in order, the Quotient will become $a-\frac{1}{3} x+\frac{x^{2}}{5 a}-\frac{x^{3}}{7 a^{2}}+\frac{x^{4}}{9 a^{3}}$, \&cc. And after the fame manner in all other Examples.

1II. In the laft Theorem make $\alpha=\mathrm{r}, \beta=0, \gamma=0, \delta=0,8 \mathrm{c}$. then $\frac{1}{P+C+R+F+\xi^{\circ} c .}=\frac{1}{P}-\frac{A Q}{P}-\frac{B Q+A R}{P}-\frac{C Q+B R+A S}{P}-$ $\frac{D Q+C R+B S+A T}{p^{\prime}}, \& c$. which Theorem will readily find the Reciprocal of any infinite Serics. Here A, B, C, D, \&cc. denote the feveral Terms of the Series in order, as before.

Thus if we would know the Reciprocal of the Series $a+\frac{x}{2} x+$ (R) (S) (T) $\frac{x^{2}}{3^{2}}+\frac{x^{3}}{4 a^{2}}+\frac{x^{4}}{5 a^{3}}$, \&c. we hall have by Subftitution $\frac{1}{a}-\frac{\frac{1}{2} \times \mathrm{A}}{a}-$ $\frac{\frac{x^{2}}{3 a} \mathrm{~A}+\frac{1}{2} x \mathrm{~B}}{a}-\frac{\frac{x^{3}}{4 a^{2}} \mathrm{~A}+\frac{x^{2}}{3 a} \mathrm{~B}+\frac{1}{2} x \mathrm{C}}{a}-\frac{\frac{x 4}{5 a^{3}} \mathrm{~A}+\frac{x^{3}}{4^{2}} \mathrm{~B}+\frac{x^{2}}{3 a} \mathrm{C}+\frac{1}{2} x \mathrm{D}}{a}$,
\&c. And reftoring the Values of $A, B, C, D, \delta u c$. it will be $\frac{1}{a}$ $\frac{x}{2 a^{2}}-\frac{x^{2}}{12 a^{3}}+\frac{x^{3}}{8 a^{4}}-\frac{79^{4}}{720 a^{5}}$, \&c. for the Reciprocal required.

EX. 2. $\frac{1}{1-\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{10} x^{3}, \xi}=1+\frac{x}{2} x+\frac{3}{8} x^{2}+\frac{5}{8} x^{3}, \& c$. And fo of others.
$I V$. In the firft Theorem if we make $P=A, Q=B, R=C$, $S=D, \& c$. that is, if we make both to be the fame Series; we fhall have $\bar{A}+B+\bar{C}+D+E+F+G, \xi^{\circ} \cdot 1^{2}=A^{2}+2 A B+2 A C+2 A D+2 A E+2 A F+2 A G$, ${ }^{\circ} \%$. $+\mathrm{B}^{2}+2 \mathrm{BC}+2 \mathrm{BD}+2 \mathrm{BE}+2 \mathrm{BF}$
$+\mathrm{C}^{2}+2 \mathrm{CD}+2 \mathrm{CE}$
$+\mathrm{D}^{2}$
which will be a Theorem for finding the Square of any infinite Series.

$$
=\frac{x^{4}}{44^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{5 x^{4}}{64 a^{6}}-\frac{7 x^{10}}{128 a^{8}}+\frac{21 x^{12}}{512 a^{10}}, \& \mathrm{cc} .
$$

$$
+\frac{17 / 4 \times 4}{6444}
$$

$$
\begin{aligned}
& \begin{aligned}
+\frac{x^{8}}{64 a^{6}}-\frac{x^{50}}{64^{8}} & +\frac{5 x^{12}}{512 a^{8}} \\
& +\frac{x^{12}}{256 a^{10}}
\end{aligned}
\end{aligned}
$$

V. In this laft Theorem, if we make $A^{2}=P, 2 A B=Q, 2 A C$ $+\mathrm{B}^{2}=\mathrm{R}, 2 \mathrm{AD}+2 \mathrm{BC}=\mathrm{S}, 2 \mathrm{AE}+2 \mathrm{BD}+\mathrm{C}^{2}=\mathrm{T}$, \&c. we fhall have $A=P^{\frac{1}{2}}, B=\frac{Q}{2 A}, C=\frac{R-B^{2}}{2 A}, D=\frac{S-2 B C}{2 A}, E=$ $\frac{T-2 B D-C^{2}}{2 A}$, \&cc. Or $\overline{P+C+K+S+T+U, \& c .1^{\frac{1}{2}}}=P^{\frac{1}{2}}$ $+\frac{Q}{2 A}+\frac{R-B^{2}}{2 A}+\frac{S-2 B C}{2 A}+\frac{T-2 B D-C^{2}}{2 A}+\frac{U-2 B E-2 C D}{2 A}$, \&c. By this Theorem the Square-root of any infinite Series may eafily be extracted. Here A, B, C, D, \&c. will reprefent the feveral Terms of the Series as they are in fucceffion.

Ex. I. $\overline{x^{2}-2 a x+2 a^{2}-\frac{a^{3}}{x} *+\frac{a^{5}}{4 x^{3}}, \& \mathrm{c} .\left.\right|^{\frac{1}{2}}}=x-a+\frac{a^{2}}{2 x} * \frac{a^{4}}{8 x^{3}} * \& c_{\text {. }}$

VI. Becaufe it is by the fourth Theorem $\overline{\alpha+\beta+\gamma+\delta+\varepsilon, \delta c .\left.\right|^{2}}$. $=\alpha^{2}+2 \alpha \beta+2 \alpha \gamma+2 a \delta+2 \alpha \varepsilon, \& c$. in the third Theorem for: $+\beta^{2}+2 \beta \gamma+2 \beta \delta$
$\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \&<\mathrm{c}$. write $\alpha^{2}, 2 \alpha \beta, 2 \alpha \gamma+\beta^{2}, 2 \alpha \delta+2 \beta \gamma, 2 \alpha \varepsilon-$ $+2 \beta \delta+\gamma^{2}$, \&c. refpectively. Then $\frac{1}{a+\beta+\gamma+\delta+\varepsilon, \vartheta_{6.1}{ }^{2}}=\frac{1}{a^{2}}-$ $\frac{2 \alpha \beta A}{\alpha^{2}}-\frac{2 \alpha B B+2 \overline{2 \alpha \gamma+\beta^{2}} \times A}{\alpha^{2}}-\frac{2 \alpha \beta C+\frac{\alpha+\beta+\gamma}{2 \alpha \gamma+\beta^{2}} \times B+\frac{+\varepsilon,}{2 \alpha \delta+2 \beta \gamma} \times A}{\alpha^{2}}$,,$\delta c$. And this will be a Theorem for finding the Reciprocal of the Square of any infinite Series. Here A, B, C, D, \&c. ftill denote the Terms of the Series in their order.
VII. If in the firft. Theorem for $P, Q, R, S, \& c$. we write $\mathrm{A}^{2}, 2 \mathrm{AB}, 2 \mathrm{AC}+\mathrm{B}^{2}, 2 \mathrm{AD}+2 \mathrm{BC}$, \&c. refpectively, (that is $\overline{A+B+C+D, \& c .\left.\right|^{2}}$, by Theor.4.) we fhall have $\overline{A+B+C+D+E+F, \& c .\left.\right|^{3}}$. $=A^{3}+3 A^{2} B+3 A B^{2}+3 A^{2} D+3 A C^{2}+3 B C^{2}, 8 c$.

$$
\begin{aligned}
& +3 A^{2} C+6 A B C+3 B^{2} C+3 B^{2} D \\
& +\mathrm{B}^{3}+6 \mathrm{ABD}+6 \mathrm{ACD} \\
& +3 A^{2} E+6 A B E \\
& +3 \mathrm{AF}
\end{aligned}
$$

which will readily give the Cube of any infinite Series.

$$
\begin{aligned}
& +\frac{5 x^{15}}{243^{a^{12}}}-\frac{10 x^{18}}{7^{20 a^{15}}} \begin{array}{c}
x^{15}
\end{array} \\
& =\frac{x^{18}}{729 a^{15}}
\end{aligned}
$$

$=\frac{x 9}{27 a^{6}}-\frac{x^{12}}{27 a^{9}}+\frac{8 x^{15}}{243 a^{12}}-\frac{7 x^{28}}{243 a^{15}}, 8 \mathrm{CC}_{0}$

VIII. In the laft Theorem, if we make $A^{3}=P, 3 A^{2} B=Q$, $A B^{2}+3 A^{2} C=R, B^{3}+6 A B C+3 A^{2} D=S, \& c$, then $A=P^{\frac{1}{3}}$ $B=\frac{Q}{3 A^{2}}, C=\frac{R-3 A B^{2}}{3 A^{2}}, D=\frac{S-6 A B C-B_{3}}{3^{A^{2}}}$, \&cc. that is $P+Q+R+S+T,\left.8 C \cdot\right|^{\frac{2}{3}}=P^{\frac{2}{3}}+\frac{Q}{3 A^{2}}+\frac{R-3 A B^{2}}{3 A^{2}}+\frac{S-B^{3}-6 A B^{2} C}{3 A^{2}}$ $+\frac{T-3 A C^{2}-3 B^{2} C-6 A B D}{3 A^{2}}, \& c$. And by this Theorem the Cuberoot of any infinite Series may be extracted. Here alfo A, B, C, D, \&c. will reprefent the Terms as they ftand in order.

Ex. I. $\frac{\overline{x^{9}}}{27 a^{6}}-\frac{x^{12}}{27 a^{9}}+\frac{8 x^{15}}{243 a^{12}}-\frac{7 x^{18}}{243^{a^{5}}}$, Brc. $^{\frac{1}{3}}=\frac{x^{3}}{3 a^{2}}-\frac{x^{6}}{9 a^{5}}+\frac{5 x 9}{81 a^{8}}-\frac{10 x^{12}}{24 a^{12}}, \mathcal{B}_{c}$.

IX. Becaufe it is by the feventh Theorem $\alpha+\beta+\gamma+\delta,\left.\delta c \mathrm{c}\right|^{3}$ $=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}$, δc c. in the third Theorem for P,

$$
+3 \alpha^{2} \gamma+6 \alpha \beta \gamma
$$

$$
+3 \alpha^{2} \delta
$$

$\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \& \mathrm{c}$. write $\alpha^{3}, 3 \alpha^{2} \beta, 3 \alpha \beta^{2}+3 \alpha^{2} \gamma, \beta^{3}+6 \alpha \beta \gamma+3 \alpha^{2} \delta^{2}$, $3 \alpha \gamma^{2}+3 \beta^{2} \gamma+6 \alpha \beta \delta+3 \alpha^{2} \varepsilon$, \&c. refpectively; then $\frac{1}{a+3+\gamma+\delta, \mathcal{F}^{2}{ }^{3}}$
 This Theorem will give the Reciprocal of the Cube of any infinite Series; where A, B, C, D, \&xc. ftand for the Terms in order.
X. Laftly, in the firft Theorem if we make $P=A^{3}, Q=3 A^{2} B$, $R=3 A B^{2}+3 A^{2} C, S=B^{3}+6 A B C+3 A^{2} D, \& c$. we hall have $\overline{A+B+C+D, 8 c .1^{4}}=A^{4}+4 A^{3} B+6 A^{2} B^{2}+4 A^{3}$, \&c. which $+4 A^{3} C+12 A^{2} B C$ $+4 A^{3} D$
will be a Theorm for finding the Biquadrate of any infinite Series.
And thus we might proceed to find particular Theorems for any other Powers or Roots of any infinite Series, or for their Reciprocals, or any fractional Powers compounded of thefe; all which will be found very convenient to have at hand, continued to a competent number of Terms, in order to facilitate the following Operations. Or it may be fufficient to lay before you the elegant and general Theorem, contrived for this purpofe, by that fkilful Mathematician, and my good Friend, the ingenious Mr. A. De Moivre, which was frrt publifh'd in the Philofophical Tranfactions, $\mathrm{N}^{\circ} 230$, and which will readily perform all thefe Operations.

Or we may have recourfe to a kind of Mechanical Artifice, by which all the foregoing Operations may be perform'd in a very eafy and general manner, as here follows.

When two infinite Series are to be multiply'd together, in order to find a third which is to be their Product, call one of them the Multiplicand, and the other the Multiplier. Write down upon your Paper the Terms of the Multiplicand, with their Signs, in a defcending order, fo that the Terms may be at equal diftances, and juit under one another. This you may call your fixt or right-hand Paper. Prepare another Paper, at the right-hand Edge of which write down the Terms of the Multiplier, with their proper Signs, in an afcending Order, fo that the Terms may be at the fame equal diftances from each other as in the Multiplicand, and juft over one another. This you may call your moveable or left-hand Paper. Apply your moveable Paper to your fixt Paper, fo that the frift. Term of your Multiplier may ftand over-againft the firft Term of your Multiplicand. Multiply thefe together, and. write down the Product in its place, for the firft Term of the Produet required. Move your moveable Paper a ftep lower, fo that two of the firft.Terms of the Multiplier may ftand over-againft two of the firf Terms of the Multiplicand. Find the two Products, by multiplying each pair of the Terms together, that ftand over-againft one another; abbreviate them if it may be done, and fet down the Refult for the fecond Term of the Product required. Move your moveable Paper a ftep lower, fo that three of the first Terms of the Multiplier may ftand over-againft three of the firft Terms of the Multiplicand. Find the three Products, by multiplying each pair of the Terms together that ftand over-againft one arother; abbreviate them, and fet down the Refult for the third Term of the Product. And proceed in the fame manner to find the fourth, and all the following Terms.

I fhall illuftrate this Method by an Example of two Series, taken from the common Scale of Denary on Decimal Arithmetick; which will equally explain the Procefs in all other infinite Series whatever.

Let the Numbers to be multiply'd be 37,528936 , \&c. and 523,73041 , \&c. which, by fupplying X or 10 where it is underftood, will become the Series $3 X+7 X^{0}+5 X^{-1}+2 X^{-2}+8 X^{-3}$ $+9 \mathrm{X}^{-4}+3 \mathrm{X}^{-5}+6 \mathrm{X}^{-6}$ scc. and $5 \mathrm{X}^{2}+2 \mathrm{X}+8 \mathrm{X}^{0}+7 \mathrm{X}^{-1}+$ $3^{X^{-2}}+0 X^{-3}+4 X^{-4}+1 X^{-5}$, sic. and call the fift the Multiplicand, and the fecond the Multiplier. Thefe being difpofed as is preferibed, will fand as follows.

Now the firft Term of the moveable Paper, or Multiplier, being apply'd to the firft Term of the Mul:iplicand, will give $5 \mathrm{X}^{2} \times 3 \mathrm{X}$ $=I_{5} \mathrm{X}^{3}$ for the firft Term of the Product. Then the two firft Terms of each being apply'd together, they will give ${ }_{5} \mathrm{X}^{2} \times 7 \mathrm{X}^{\circ}$ $+2 \mathrm{X} \times 3^{\mathrm{X}}=41 \mathrm{X}^{3}$ for the fecond Term of the Product. Then the three firft Terms of each being apply'd together, they will give $5 \mathrm{X}^{2} \times 5 \mathrm{X}^{-1}+2 \mathrm{X} \times 7 \mathrm{X}^{\circ}+8 \mathrm{X}^{\circ} \times 3 \mathrm{X}=63 \mathrm{X}$ for the third Term of the Product. And fo on. So that the Product required will be ${ }_{15} X^{3}+41 X^{2}+63 X+97 X^{0}+142 X^{-1}+133 X^{-2}+138 X^{-3}$ $+201 X^{-+}$, \&c. Now this will be a Number in the Decimal Scale of Arithmetick, becaufe $X=10$. But in that Scale, when it is regular, the Coctficients muft always be affirmative Integers, lefs than the Root Io-; and therefore to reduce thefe to fuch, fet them orderly under one another, as is done here, and beginning at the lowert, collect them as they ftand, by adding up each Column. The reafon of which is this. Becaufe $201 \mathrm{X}^{-4}=20 \mathrm{X}^{-3}+1 \mathrm{X}^{-4}$, we muit fet down I X^{-4}, and add $20 X^{-3}$ to the line above, Tlien becaufe $20 X^{-3}$ $+{ }_{1} 88 \mathrm{X}^{-3}=15^{8} \mathrm{X}^{-3}=15^{-2}+8 \mathrm{X}^{-3}$, we muft fet down $8 \mathrm{X}^{-3}$, and add ${ }_{5} \mathrm{X}^{-2}$ to the line above. Then tecaufe ${ }_{5} \mathrm{X}^{-2}+\mathrm{I}_{3} \mathrm{XX}^{-2}$ $=148 \mathrm{X}^{-2}=14 \mathrm{X}^{-1}+8 \mathrm{X}^{-2}$, we muft fet down $8 \mathrm{X}^{-2}$, and add $14 \mathrm{X}^{-1}$ to the line above. And fo we munt proceed through the whole Number. So that at laft we fhall find the Product to be IX * $+9 X^{3}+8 X^{2}+4 X+2 X^{0}+6 X^{-1}+8 X^{-2}+8 X^{-3}$, $8 x$. Or by fupprefing X, or 10 , and leaving it to be fupply'd by the Imagination, the Product required will be $19 \$ 42,588$, \&c.

When one infinite Series is to be divided by another, wite down the Terms of the Dividend, with their prorer Signs, in a dercending order, fo that the Tums may be at equal ditances, and jutt un-
der one another. This is your fixt or right-hand Paper. Prepare another Paper, at the right-hand Edge of which write down the Terms of the Divifor in an afcending order, with all their Signs changed except the firft, fo that the Terms may be at the fame equal diftances as before, and juft over one another. This will be your moveable or left-hand Paper. Apply your moveable Paper to your fixt Paper, fo that the firft Term of the Divifor may be over-againft the firft Term of the Dividend. Divide the firf Term of the Dividend by the firft Term of the Divifor, and fet down the Quotient over-againft them to the right-hand, for the firft Term of the Quotient required. Move your moveable Paper a ftep lower, fo that two of the firft Terms of the Divifor may be over-againft two of the firft Terms of the Dividend. Collect the fecond Term of the Dividend, together with the Product of the firft Term of the Quotient now found, multiply'd by the Terms over-againft it in the lefthand Paper ; thefe divided by the firft Term of the Divifor will be the fecond Term of the Quotient required. Move your moveable Paper a ftep lower, fo that three of the firft Terms of the Divifor may ftand over-againft three of the firft Terms of the Dividend. Collect the third Term of the Dividend, together with the two Products of the two firf Terms of the Quotient now found, each being multiply'd into the Term over-againft it, in the left-hand Paper. Thefe divided by the firf Term of the Divifor will be the third Term of the Quotient required. Move your moveable Paper a ftep lower, fo that four of the firft Terms of the Divifor may ftand overagainft four of the firft Terms of the Dividend. Collect the fourth Term of the Dividend, together with the three Products of the three firft Terms of the Quotient now found, each being multiply'd by the Term over-againft it in the left-hand Paper. Thefe divided by the firf Term of the Divifor will be the fuurth Term of the Quotient required. And fo on to find the fifth, and the fucceeding Terms.

For an Example let it be propofed to divide the infinite Series $a^{2}+\frac{1}{6} a x+\frac{11}{3} x^{2}+\frac{121 x^{3}}{126 c a}+\frac{281 x^{4}}{1260 a^{2}}$, \&xc. by the Series $a+\frac{7}{2} x$ $+\frac{x^{2}}{3 a}+\frac{x^{3}}{4 a^{2}}+\frac{x^{4}}{5 a^{3}}$, \&cc. Thefe being difpofed as is prefcribed, will ftand as here follows.

Here if we apply the firft Term of the Divifor a, to the firft Term of the Dividend a^{2}, by Divifion we fhall have a for the firft Term of the Quotient. Then applying the two firft Terms of the Divifor to the two firft Terms of the Dividend, we fhall have $\frac{7}{6} a x$ to be collected with the Product $a \times-\frac{1}{2} x$, or $-\frac{x}{2} a x$, which will make $-\frac{1}{3} a x$; and this divided by a, the firf Term of the Divifor, will give $-\frac{1}{3} x$ for the fecond Term of the Quotient. And fo of the other Terms; and in like manner for all other Examples.

When an infinite Series is to be raifed to any Power, or when any Root of it is to be extracted, it may be perform'd in all cafes by a like Artifice. Prepare your fixt or right-hand Paper, by writing down the natural Numbers $0,1,2,3,4, \& c$. juft under one another at equal diftances, referving places to the right-hand for the feveral Terms of the Power or Root, as they thall be found. The firft Term of which Series may be immediately known from the firft. Term of the given Series, and from the given Index of the Power or Root, whether that Index be an Integer or a Fraction, affirmative or negative ; and that Term therefore may be fet down in its place ${ }_{5}$, over-againft the firft Number o. Prepare your moveable or lefthand Paper, by writing down, towards the edge of the Paper at the right-hand, all the Terms of the given Series, except the firft, over one another in order, at the fame diftances as the Numbers in the other Paper. After which, nearer the edge of the Paper, write juft over one another, firft the Index of the Power or Root to be found, then its double, then its triple, and fo the reft of its multiples; with the negative Sign after each, as far as the Terms of the Series extend. And alfo the firft Term of the given Series may be wrote below. Thus will the moveable Paper be prepared. Thefe multiples, together with the following negative Signs, and the Numbers,
$0,1,2,3,4, \hat{\&} c$. on the other Paper, when they meet together, will compleat the numeral Coefficients. Apply therefore the fecond Term of the moveable Paper to the uppermoft Term of the fixt Paper, and the Product made by the continual Mutiplication of the three lactors that.fand in a lire over-againt one another, [which are the fecond Term of the given Series, the numeral Coefficient, (here the given Index,) and the firft Term of the Series already found, divided by the firft Term of the given Series, will be the fecond Term of the Series required, which is to be tet down in its place overagaint I. Move the moveable Paper a ftep lower, and the two Products made by the multiplication of the Factors that ftand overagainft one another, (in which, and elfewhere, care muft be had to take the numeral Coefficients compleat,) divided by twice the firft Term of the given Series, will bc the third Term of the Series required, which is to be fet down in its place over-againft 2. Move the moveable Paper a ftep lower, and the three Products made by the multiplication of the Factors that ftard over-againft one another, divided by thrice the firft Term of the given Series, will be the fourth Term of the Series required. And fo you may proceed to find the next, and the fubfequent Terms.

It may not be amifs to give one general Example of this Reduction, which will comprehend all particular Cafes. If the Series $a z$ $+b z^{2}+c z^{3}+d z^{4}$, \&c. be given, of which we are to find any Power, or to extract any Root; let the Index of this Power or Root be m. Then prepare the moveable or left-hand Paper as you fee below, where the Terms of the given Scries are fet over one another in order, at the edge of the Paper, and at equal diftances. Alfo after every Term is put a full point, as a Mark of Multiplication, and after every one, (except the firft or loweft) are put the feveral Multiples of the Index, as $m, 2 m, 3 m, 4 m$, \&c. with the negative Sign - after them. Likewife a vinculum may be underftood to be placed over them, to connect them with the other parts of the numeral Coefficients, which are on the other Paper, and which make them compleat. Alfo the firf Term of the given Series is feparated from the reft by a line, to denote its heing a Divifor, or the Denominator of a Fraction. And thus is the moveable Paper prepared.

To prepare the fixt or right-hand Paper, write down the natural Numbers $0,1,2,3,4,8 c$. under one another, at the fame equal diftances as the Terms in the other Paper, with a Point after them as a Mark of Multiplication; and over-againft the firft Terın o
write $a^{m} 氵^{m}$ for the firft Term of the Series required. The reft of the Terms are to be wrote down orderly under this, as they fhall bc found, which will be in this manner. To the firft Term o in the fixt Paper apply the fecond Term of the moveable Paper, and they will then exhibit this Fraction $\frac{b z^{2} \cdot \overline{m-0 .} a^{m} z^{m}}{a z \cdot 1}$, which being reduced to this $m a^{m-1} b a^{m+\mathrm{r}}$, muft be fet down in its place, for the fecond Term of the Series required. Move the moveable Paper a ftep lower, and you will have this Fraction exhibited $+c z^{3} \cdot \overline{2 m-0} \cdot c^{m} z^{m}$

$$
\frac{+b z^{2} \cdot m-1 \cdot m a^{m-1} b z^{m+1}}{a z \cdot 2}
$$

which being reduced will become $\overline{m a^{m-1} c+m \times \frac{m-1}{2} a^{m-2} b^{2}} \times 2^{m+=}$, to be put down for the third Term of the Series required. Bring down the moveable Paper a ftep lower, and you will have the Fraction $+d z^{4} \cdot \overline{3 m-0} a^{m} z^{m}$

$$
\begin{aligned}
& +c z^{3} \cdot 2 m-1 \cdot m a^{m-1} b z^{m+1} \\
& +b z^{2} \cdot m-2 \cdot m a^{m-\mathrm{r}} c+m \times \frac{m-1}{2} a^{m-2} b^{2} \times z^{m+3}
\end{aligned}
$$

az. 3
which reduc'd will be $m a^{m-1} d+m \times \frac{m-1}{1} a^{m-2} b c+m \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3} \times 2^{m+3}$, for the fourth Term of the Series required. And in the fame manner are all the reft of the Terms to be found.

Moveable
Paper, $\delta^{\circ} c$
$+d z^{4} \cdot \overline{3 m-}$
$+c z^{3} \cdot 2 m-$
$+b z^{2} \cdot m-$
$a z$.

N. B. This Operation will produce Mr. De Moivre's Theorem mentioned before, the Inveftigation of which may be feen in the place there quoted, and thall be exhibited here in duc time and place. And this therefore will fufficiently prove the truth of the prefent Procefs. In particular Examples this Method will be found very eafy and practicable.

A a
But

But now to fhew fomething of the ufe of thefe Theorems, and at the fame time to prepare the way for the Solution of Affected and Fluxional Equations; we will here make a kind of retrofpect, and refume our Author's Examples of fimple Extractions, beginning with Divifion itfelf, which we fhall perform after a different and an eafier manner.

Thus to divide $a a$ by $b+x$, or to refolve the Fraction $\frac{a a}{b+x}$ into a Series of fimple Terms; make $\frac{a a}{b+x}=y$, or $b y+x y=a a$. Now to find the quantity y difpofe the Terms of this Equation after this manner $\left.+\begin{array}{c}b_{y} \\ x y\end{array}\right\}=a^{2}$, and proceed in the Refolution as you fee is done here.

$$
\begin{array}{r}
\left.\begin{array}{r}
b y \\
+x y
\end{array}\right\}=a^{2}-\frac{a^{2} x}{b}+\frac{a^{2} x^{2}}{b^{2}}-\frac{a^{2} x^{3}}{b^{3}}+\frac{a^{2} \times 4}{a^{2} x}, \delta c_{0} \\
y=\frac{a^{2} x^{2}}{b^{2}}+\frac{a^{2} x^{3}}{b^{3}}-\frac{a^{2} x^{4}}{b^{2}}, \delta c . \\
\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}-\frac{a^{2} x^{3}}{b 4}+\frac{a^{2} \times 4}{b^{5}}, \delta c .
\end{array}
$$

Here by the difpofition of the Terms a^{2} is made the firft Term of the Series belonging (or equivalent) to $b y$, and therefore dividing by $b, \frac{a^{2}}{b}$ will be the firf Term of the Series equivalent to y, as is fet down below. Then will. $+\frac{a^{2} x}{b}$ be the firf Term of the Series $+x y$, which is therefore fet down over-againft it; as alfo it is fet down over-againft by, but with a contrary Sign, to, be the fecond Term of that Series. Then will - $\frac{a^{2} x}{b^{2}}$ be the fecond Term of y, to be fet down in its place, which will give - $\frac{a^{2} x^{2}}{l^{2}}$ for the fecond Term of $+x y$; and this with a contrary Sign muft be fet down for the third Term of $b y$. Then will $+\frac{a^{2} x^{2}}{l 3}$ be the third Term of y, and therefore $+\frac{a^{2} x^{3}}{t^{3}}$ will be the third Term of $+x y$, which with a contrary Sign muft be made the fourth Term of $b y$, and therefore - $\frac{a^{2} x^{3}}{b^{4}}$ will be the fourth Term of y. And fo on for ever.

Now the Rationale of this Procefs, and of all that will here fol.low of the fame kind, may be manifef from thefe Confiderations. The unknown Terms of the Equation, or thofe wherein y is found, are (by the Hypothefis) equal to the known Term $a a$. And each of thofe
thofe unknown Terms is refolved into its equivalent Series, the Ag gregate of which muft ftill be equal to the fame known Term aa; (or perhaps Terms.) Therefore all the fubfidiary and adventitious 'Terms, which are introduced into the Equation to affift the Solution, (or the Supplemental Terms,) muft mutually deftroy one another.

Or we may refolve the fame Equation in the following manner :

$$
\begin{array}{r}
\left.\begin{array}{r}
b y \\
+x y
\end{array}\right\}=-+\frac{b a^{2}}{x}-\frac{b^{2} a^{2}}{x^{2}}+\frac{b_{3} a^{2}}{x^{3}}, \& \mathrm{c}_{0} \\
=a^{2}-\frac{b_{a^{2}}}{x}+\frac{b^{2} a^{2}}{x^{2}}-\frac{b_{3} a^{2}}{x^{3}}, \& \mathrm{cc} . \\
y=\frac{a^{2}}{x}-\frac{t_{a^{2}}}{x^{2}}+\frac{b^{2} a^{2}}{x^{3}}-\frac{b a^{2} a^{2}}{x^{4}}, \delta \mathrm{cc} .
\end{array}
$$

Here a^{2} is made the firft Term of $+x y$, and therefore $\frac{a^{2}}{x}$ muft be put down for the firt Term of y. This will give $+\frac{b c^{2}}{x}$ for the firft Term of $b y$, which with a contrary Sign muft be the fecond Term of $+x y$, and therefore - $\frac{b a^{2}}{x^{2}}$ muft be put down for the fecond Term of y. Then will - $\frac{b^{2} a^{2}}{x^{2}}$ be the fecond Term of $b y$, which with a contrary Sign will be the third Term of $+x y$, and therefore $+\frac{b^{2} a^{2}}{x^{3}}$ will be the third Term of y. And fo on. Therefore the Fraction propofed is refolved into the fame two Series as were found above.

If the Fraction $\frac{1}{1+x^{2}}$ were given to be refolved, make $\frac{1}{1+x^{2}}$ $=y$, or $y+x^{2} y=1$, the Refolution of which Equation is little more than writing down the Terms, in the manner following:
$\left.\left.\begin{array}{c}y \\ +x^{2} y\end{array}\right\}=1-x^{2}+x^{4}-x^{6}+x^{8}, \& c . \begin{array}{c}y \\ -x^{2}-x^{4}+x^{6}, \& x . \\ +x^{2} y^{\prime}\end{array}\right\}\left\{\begin{array}{c}-+x^{-2}-x^{-4}+x^{-5}-x^{-8}, \& \mathrm{cc} . \\ =1-x^{-2}+x^{-4}-x^{-6}, \& c .\end{array}\right.$
Here in the firft Paradigm, as 1 is made the firft Term of y, fo will x^{2} be the firft Term of $x^{2} y$, and therefore - x^{2} will be the fecond Term of y, and therefore - x^{4} will be the fecond Term of $x^{2} y$, and therefore $+x^{4}$ will be third Term of $y ; \& c$. Alfo in the fecond Paradigm, as I is made the firft Term of $x^{2} y$, fo will $+x^{-2}$ be the firft Term of y, and therefore $-x^{-2}$ will be the fecond Term of $x^{2} y$, or $-x^{-4}$ will be the fecond Term of y; \&c.

To refolve the compound Fraction $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1+x^{\frac{3}{2}}-3 x}$ into fimple Terms, make $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1+x^{\frac{1}{2}}-3 x}=y$, or $2 x^{\frac{1}{2}}-x^{\frac{3}{2}}=y+x^{\frac{1}{2}} y-3 x y$; which E quation may be thus refolved :

$$
\begin{aligned}
& =2 x^{\frac{7}{2}} *-x^{\frac{3}{2}} \\
& \left.\begin{array}{r}
y \\
+x^{\frac{1}{2}} y
\end{array}\right\}--2 x^{\frac{1}{2}}-2 x+7 x^{\frac{3}{2}}-13 x^{2}+34 x^{\frac{5}{2}}-73 x^{3}, 8 \mathrm{c} . \\
& -3 x y \int^{\prime} \ldots-\cdots-6 x^{\frac{2}{2}}+6 x^{2}-21 x^{\frac{5}{2}}+39^{x^{3}}, \& \mathrm{c} \text {. }
\end{aligned}
$$

Place the Terms of the Equation, in which the unknown quantity y is found, in a regular defcending order, and the known Terms above, as you fee is done here. Then bring down $2 x^{\frac{1}{3}}$ to be the firft Term of y, which will give $+2 x$ for the firft Term of the Scries $+x^{\frac{1}{2}} y$, which muft be wrote with a contrary Sign for the fecond Term of y. Then will the fecond Term of $+x^{\frac{1}{2}} y$ be $-2 x^{\frac{3}{2}}$, and the firft Term of the Series - $3 x y$ will be $-6 x^{\frac{3}{2}}$, which together make $-8 x^{\frac{3}{2}}$. And this with a contrary Sign would have been wrote for the third Term of y, had not the Term - $x^{\frac{3}{2}}$ been above, which reduces it to $+7 x^{\frac{3}{2}}$ for the third Term of y. Then will $+7 x^{2}$ be the third Term of $+x^{\frac{x}{2}} y$, and $+6 x^{2}$ will be the fecond Term of - $3 a y$, which being collected with a contrary Sign, will make - $13 x^{2}$ for the fourth Term of y; and fo on, as in the Paradigm.

If we would refolve this Fraction, or this Equation, fo as to accommodate it to the other cafe of convergency, we may invert the Terms, and proceed thus:

$$
\begin{aligned}
& =-x^{\frac{3}{2}} *+2 x^{\frac{1}{2}} \\
& \text { - } 3 x y]---x^{\frac{3}{2}}-\frac{1}{3} x+\frac{14}{9} x^{\frac{1}{2}}+\frac{1}{2} \frac{1}{7}, 8 \mathrm{cc} . \\
& \left.\begin{array}{l}
+x^{\frac{1}{2}} y \\
+y
\end{array}\right\}-\cdots-\cdots+\frac{1}{3} x+\frac{1}{9} x^{\frac{1}{2}}-\frac{1}{2} \frac{1}{2}, \& c . \\
& y=\frac{1}{3} x^{\frac{1}{2}}+\frac{1}{9}-\frac{1}{2} \frac{4}{9} x^{-\frac{1}{2}}-\frac{1}{8} \frac{1}{1} x^{-1}, \delta \mathrm{cc} .
\end{aligned}
$$

Bring down $-x^{\frac{3}{2}}$ to be the firft Term of - $3 x y$, whence $+\frac{x}{3} x^{\frac{\pi}{2}}$ will be the firft Term of y, to be fet down in its place. Then the firft
firft Term of $+x^{\frac{1}{2} y}$ will be $+\frac{1}{3} x$, which with a contrary Sign will be the fecond Term of $-3 x y$, and therefore $+\frac{1}{9}$ will be the fecond Term of y. Then the fecond Term of $+x^{\frac{1}{2} y}$ will be $+\frac{1}{9} x^{\frac{1}{2}}$, and the firt Term of y being $+\frac{1}{3} x^{\frac{1}{2}}$, thefe two collected with a contrary Sign would have made $-\frac{4}{9} x^{\frac{1}{2}}$ for the third Term of $-3 x y$, had not the Term $+2 x^{\frac{1}{2}}$ been prefent above. Therefore uniting thefe, we fhall have $+\frac{14}{9} x^{\frac{1}{2}}$ for the third Term of - $3 x y$, which will give - $\frac{1}{2} \frac{4}{2} x-\frac{1}{2}$ for the third Term of y. Then will the third
 thefe two collected with a contrary Sign will make $+\frac{1}{2} \frac{3}{2}$ for the fourth Term of - $3 x y$, and therefore $-\frac{1}{8} \frac{1}{8} x^{-5}$ will be the fourth Term of y; and fo on.

And thus much for Divifion; now to go on to the Author's pure or fimple Extractions.
To find the Square-root of $a a+x x$, or to extract the Root y of this Equation $y y=a a+x x$; make $y=a+p$, then we fhall have by Subftitution $2 a p+p p=x x$, of which affected Quadratick Equation we may thus extract the Root p. Difpofe the Terms in this manner $2 a p z=x x$, the unknown Terms in a defcending order on $+p p\}$
one fide, and the known Term or Terms on the other fide of the Equation, and proceed in the Extraction as is here directed.

$$
\begin{aligned}
& 2 a p]=x^{2}-\frac{x 4}{4 a^{4}}+\frac{x^{6}}{8 a^{4}}-\frac{5 x^{8}}{04^{6}}+\frac{x^{10}}{128 \alpha^{6}}, 8 c c . \\
& \left.+p^{2}\right] \cdots+\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{5 x^{8}}{64 a^{6}}-\frac{7 x^{10}}{128 a^{8}}, \text { \&cc. } \\
& p=\frac{x^{2}}{2 a}-\frac{24}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}+\frac{7 x^{x 0}}{256 a^{9}}, 8 \mathrm{cc} .
\end{aligned}
$$

By this Difpofition of the Terms, x^{2} is made the firf Term of the Series belonging to $2 a p$; then we fhall have $\frac{x^{2}}{2 a}$ for the firft Term of the Series p, as here fet down underneath. Therefore $\frac{x^{4}}{4 a d}$ will be the firft Term of the Series f^{2}, to be put down in its place over-againt p^{2}. Then, by what is obferved before, it muft be put down with a contrary Sign as the fecond Tern of 20 p , which will make the fecond Term of p to be $-\frac{x 4}{8,3}$. Having there-
fore the two firf Terms of $p=\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}$, we flall have, (by any of the foregoing Methods for finding the Square of an infinite Series,) the two firft Terms of $p^{2}=\frac{24}{4 a^{2}}-\frac{2^{6}}{864} ;$ which laft Term muft be wrote' with a contrary Sign, as the third Term of $2 a p$. Therefore the third Term of p is $\frac{16}{16 a^{5}}$, and the third Term of p^{2} (bỳ the aforefaid Methods) will be $\frac{5 x^{8}}{6+4^{6}}$, which is to be wrote with a contrary Sign, as the fourth Term of $2 a p$. Then the fourtis Terrin of p will be - $\frac{5 x^{8}}{128 a^{2}}$, and therefore the fourth Term of p^{2} is - $\frac{7 \times x^{10}}{128 \alpha^{8}}$, which is to be wrote with a contrary Sign for the fifth Term of $2 a p$. This will give $\frac{7 x^{10}}{25 ; a^{9}}$ for the fifth Term of p; and $f 0$ we may proceed in the Extraction as far as we pleafe.

Or we may difpofe the Terms of the Supplemental Equation thus:

$$
\left.\begin{array}{c}
2 a p \\
+p^{2}
\end{array}\right\}=\begin{gathered}
--+2 a x-2 a^{2}+\frac{a^{3}}{x} *-\frac{a^{5}}{4 x^{3}}, 8 \mathrm{x} . \\
p=2 a x+2 a^{2}-\frac{a^{3}}{x} *+\frac{a^{5}}{4 x^{3}}, \delta c . \\
p=x+\frac{a^{2}}{2 x} *-\frac{a^{4}}{8 x^{3}} *, \delta \delta c .
\end{gathered}
$$

Here x^{2} is made the firft Term of the Series p^{2}, and therefore x, (or elfe $-x ;$) will be the firft Term of p. Then $2 a x$ will be the firf Terni of $2 a p$, and therefore - $2 a x$ will be the fecond Term of p^{2}. So that becaufe $p^{2}=x^{2}-\dot{2} a x, \& c$. by extiacting the Square-root of this Series by any of the foregoiug Methods, it will be found $p=x-a, \& c c$. or $-a$ will be the fecond Term of the Root p. Therefore the fecond Term of $2 a p$ will be $-2 a^{2}$, which muft be wrote with a contrary Sign for the third Term of p^{2}, and thence (by Extraction) the third Term of p will be $\frac{a^{2}}{2 x}$. This will make the third Term of $2 a p$ to be $\frac{a^{3}}{x}$, which makes the fourth Term of p^{2}. to be 一 $\frac{a^{3}}{5}$, and therefore (by Extraction) o will be the fourth Term of p. This makes the fourth Term of $2 a p$ to be o, as alfo of p^{2}. Then - $\frac{a^{4}}{8 \times 3}$ will be the fifth Term of p. Then the fifth Term of

2ap will be $-\frac{a^{5}}{4 x^{3}}$, which will make the fixth Term of p^{2} to be $\frac{a^{5}}{4^{x^{3}}}$; and therefore o will be the fixth Term of $p, \& c$.

Here the Terms will be alternately deficient; fo that in the given Equation $y y=a a+x x$, the Root will be $y=a+x-a+\frac{a^{2}}{2 x}$, \&c. that is $y=x+\frac{a^{2}}{2 x}-\frac{a^{4}}{8 x^{3}}+\frac{a^{6}}{16 x^{5}}, \delta \mathrm{c}$. which is the fame as if we fhould change the order of the Terms, or if we fhould change a into x, and x into a.

If we would extract the Square-root of $a a-x x$, or find the Root y of the Equation $y=a a-x x$; make $y=a+p$, as before; then $2 a p+p^{2}=-x^{2}$, which may be refolved as in the following Paradigm:

$$
\left.\begin{array}{r}
2 a p \\
+p^{2}
\end{array}\right\}=-x^{2}-\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}-\frac{5 x^{8}}{84^{6}}-\frac{7 x^{\mathrm{ro}}}{118 a^{8}}, \delta \mathrm{cc}_{0} .
$$

Here if we fhould attempt to make - x^{2} the firft Term of $+p^{2}$, we thould have $\sqrt{ }-x^{2}$, or $x \sqrt{ }-1$, for the firft Term of p; which being impofible, fhews no Series can be form'd from that Suppofition.

To find the Square-root of $x-x x$, or the Root y in this Equation $y y=x-x x$, make $y=x^{\frac{1}{2}}+p$, then $x+2 x^{\frac{1}{2}} p+p^{2}=x$ $-x x$, or $2 x^{\frac{1}{2}} p+f^{2}=-x^{2}$, which may be refolved after this manner :

$$
\begin{aligned}
& \left.2 x^{\frac{x}{2}} p\right\}=-x^{2}-\frac{\pi}{4} x^{3}-\frac{7}{8} x^{4}, \& c \text {. } \\
& \left.+f^{2}\right\}-\cdots+\frac{1}{4} x^{3}+\frac{x}{8} x^{4}, \& \mathrm{cc} \text {. } \\
& p=-\frac{1}{2} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{1}{2}}-\frac{1}{1} \sigma^{\frac{1}{2}} x^{\frac{2}{2}}, \& x \mathrm{c} .
\end{aligned}
$$

The Terms being rightly difpofed, make - x^{2}, the firf Term of $2 x^{\frac{\pi}{2}} p$; then will - $\frac{1}{2} x^{\frac{3}{2}}$ be the firft Term of p. Therefore $+\frac{1}{4} x^{3}$ will be the firft Term of f^{2}, which is alfo to be wrote with a contrary Sign for the fccond Term of $2 x^{2} p$, which will give - $\frac{x^{2}}{8} w^{\frac{5}{2}}$ for the fecond Term of p. Then (by fquaring) the fecond Term of f^{2}, will be $\frac{1}{8} x^{4}$, which will give - $\frac{1}{8} x^{4}$ for the fecond Term of

184 The Metbod of Fluxions,
$2 x^{\frac{1}{2}} p$, and therefore - $\frac{1}{T} \sigma x^{\frac{7}{2}}$ for the third Term of p; and fo on. Therefore in this Equation it will be $y=x^{\frac{1}{2}}-\frac{1}{2} x^{\frac{3}{2}}-\frac{x}{8} x^{\frac{5}{2}}-\frac{1}{2} x^{\frac{7}{2}}$, \&x.

So to extract the Root y of this Equation $y y=a a+b x-x x$, make $y=a+p$, then $2 a p+p^{2}=b x-x i x$, which may be thus refolved.

$$
\begin{aligned}
& p=\frac{b x}{2 a}-\frac{x^{2}}{2 a}+\frac{b x^{3}}{4 a^{3}}, \& x . \\
& -\frac{b^{2} x^{2}}{8 a^{3}}+\frac{b^{3} x^{3}}{16 a^{5}}
\end{aligned}
$$

Make $b x$ the firf Term of $2 a p$; then will $\frac{b x}{2 a}$ be the firf Term of p. Therefore the firft Term of p^{2} will be $+\frac{b^{2} x^{2}}{4 a^{2}}$, which is alfo to be wrote with a contrary Sign, fo that the fecond Term of $2 a p$ will be - $x^{2}-\frac{b^{2} x^{2}}{4^{2}}$, which will make the fecond Term of p to be $-\frac{x^{2}}{2 a}-\frac{b^{2} x^{2}}{8 a^{3}}$. ${ }^{\text {. }}$ Then by fquaring, the fecond Term of. p_{-}^{2} will be $-\frac{b x^{3}}{2 a^{2}}-\frac{b 3 x^{3}}{8 a^{4}}$, which muft be wrote with a contrary Sign for the third Term of $2 a p$. This will give the third Term of p as in the Example; and fo on. Therefore the Square-root of the Quantity $a_{-}^{2}+b x-x x$ will be $a+\frac{b x}{2 a}-\frac{x^{2}}{2 a}-\frac{b^{2} x^{2}}{8 a^{3}}+\frac{b x^{3}}{4^{3}} \pm$ $\frac{b 3 \times 3}{16 a^{5}}$, 8 cc .

Alfo if we would extract the Square-root of $\frac{1+a x^{2}}{1-b x^{2}}$, we may extract the Roots of the Numerator, and likewife of the Denominator, and then divide one Series by the other, as before ; but more directly thus. Make $\frac{1+a x^{2}}{1-b x^{2}}=y y$, or $1+a x^{2}=y y-b^{2} x^{2} y^{1}$. Suppore $y=1+p$, then $a x^{2}=2 p+p^{2}-b x^{2}-2 b x^{2} p-b x^{2} p^{2}$, which Suppplemental Equation may be thus refolved.

Make $a x^{2}+b x^{2}$ the firf Term of $2 p$, then will $\frac{x}{2} a x^{2}+\frac{x}{2} b x^{2}$ be the firft Term of p. Therefore - $a b x^{4}-b^{2} x^{4}$ will be the firft Term of $-2 b x^{2} p$, and $\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{4}+\frac{1}{4} b x^{4}$ will be the firt Term of p^{2}. Thefe being collected, and their Signs changed, muft be made the fecond Term of $2 p$, which will give $\frac{x}{4} a b x^{4}+\frac{3}{6} b^{2} x^{4}$ $\frac{1}{8} a^{2} x^{4}$ for the fecond Term of p. Then the fecond Term of - $2 b x^{2} p$ will be $-\frac{1}{2} a b^{2} x^{6}-\frac{3}{4} b^{3} x^{6}+\frac{1}{4} a^{2} b x^{6}$, and the fecond Term of p^{2} (by fquaring) will be found $\frac{1}{8} a^{4} b x^{6}+\frac{5}{8} a b^{2} x^{6}-\frac{1}{8} a^{3} x^{6}+\frac{3}{8} b^{3} x^{6}$, and the firf Term of - $b x^{2} p^{2}$ will be $-\frac{1}{4} a^{2} b x^{6}-\frac{1}{2} a b^{2} x^{6}-\frac{1}{4} b^{3} x^{6}$; which being collected and the Signs changed, will make the third Term of $2 p$, half which will be the third Term of p; and fo on as far as you pleafe.

And thus if we were to extract the Cube-root of $a^{3}+x^{3}$, or the Root y of this Equation $y^{3}=a^{3}+x^{3}$; make $y=a+p$, then by Subftitution $a^{3}+3 a^{2} p+3 a p^{2}+p^{3}=a^{3}+x^{3}$, or $3 a^{2} p+3 a p^{3}$, $+p^{3}=x^{3}$; which fupplemental Equation may be thus refolved.

$$
\left.\begin{array}{c}
\left.3 a^{2} p\right\}=x^{3}-\frac{x^{6}}{3 a^{3}}+\frac{5 x^{9}}{27 a^{6}}-\frac{10 x^{12}}{81 a^{9}}, \& c . \\
+3 a p^{2} \\
+p^{3}
\end{array}\right\}-\cdots+\frac{x^{6}}{3 a^{3}}-\frac{2 x^{9}}{9 a^{6}}+\frac{13 x^{12}}{81 a^{9}}, \& \mathrm{xc} .
$$

B b
The

The 'Terms being difpos'd in order, the firft Term of the Series: $3 a^{2} p$ will be x^{3}, which will make the firft Term of p to be $\frac{x^{3}}{3 a^{2}}$. This will make the firft Term of p^{2} to be $\frac{x^{6}}{9 a^{4}}$. And this will make the firft Term of $3 a p^{2}$ to be $\frac{x^{6}}{3^{3}}$, which with a contrary Sign muft be the fecond Term of $3 a^{2} p$, and therefore the fecond Term of p will be - $\frac{x^{6}}{9 a^{5}}$. Then (by fquaring) the fecond Term of $3 a p^{2}$ will be - $\frac{2 x^{9}}{9 a^{6}}$, and (by cubing) the firft Term of p^{3} will be $\frac{x^{9}}{277^{6}}$. Thefe being collected make - $\frac{5 x^{9}}{27 a^{6}}$, which with a contrary Sign muft be the third Term of $3 a^{2} p$, and therefore the third Term of p will be $+\frac{5 x^{9}}{81 a^{8}}$. Then by fquaring, the third Term of $3 a p^{2}$ will be $\frac{13 x^{12}}{81 a^{9}}$, and by cubing, the fecond Term of p^{3} will be - $\frac{x^{52}}{27^{9} 9}$, which being collected will make $\frac{10 x^{12}}{81 a^{9}}$; and therefore the fourth Term of: $3 a^{2} p$ will be $-\frac{10 x^{12}}{81 a^{9}}$, and the fourth Term of p will be $-\frac{10 x^{12}}{24 a^{14}}$. And fo on:

And thus may the Roots of all pare Equations be extracted, but in a more direct and fimple manner by the foregoing Theorems. All that is here intended, is, to prepare the way for the Refolution of affected Equations, both in Numbers and Species, as alfo of Fluxional Equations, in which this Method will be found to be of very extenfive ufe. And firft we fhall proceed with our Author to the Solution of numerical affected Equations.

Sect. III. The Refolution of Numeral Affected Equations.

NO W as to the Refolution of affected Equations, and furft in Numbers; our Author very juftly complains, that before his time the exegefis numerofa, or the Doctrine of the Solution of affected Equations in Numbers, was very intricate, defective, and inartificial. What had been done by Vieta, Harrior, and Ougbtred in this matter, tho' very laudable Attempts for the time, yet however was extremely perplex'd and operofe. So that he had good reafon to reject their Methods, efpecially as he has fubftituted a much better in their room. They affected too great accaracy in purfuing exact
exact Roots, which led them into tedious perplexities; but he knew very well, that legitimate Approximations would proceed much more regularly and expeditioufly, and would anfwer the fame intention much better.

20, $2 \mathrm{I}, 22$. His Method may be eafily apprehended from this one Inftance, as it is contain'd in his Diagram, and the Explanation of it. Yet for farther Illuftration Ifhall venture to give a flort rationale of it. When a Numeral Equation is propos'd to be refolved, he takes as near an Approximation to the Root as can be readily and conveniently obtain'd. And this may always be had, either by the known Method of Limits, or by a Linear or Mechanical Conftruction, or by a few eafy trials and fuppofitions. If this be greater or lefs than the Root, the Excefs or Defect, indifferently call'd the Supplement, may be reprefented by p, and the affumed Approximation, together with this Supplement, are to be fubftituted in the given Equation inftead of the Root. By this means, (expunging what will be fuperfluous,) a Supplemental Equation will be form'd, whofe Root is now p, which will confift of the Powers of the affumed Approximation orderly defcending, involved with the Powers of the Supplement regularly afcending, on both which accounts the Terms will be continually decreafing, in a decuple ratio or fafter, if the affumed Approximation be fuppos'd to be at leaft ten times greater than the Supplement. Therefore to find a new Approximation, which fhall nearly exhauft the Supplement p, it will be fufficient to retain only the two firft Terms of this Equation, and to feek the Value of p from the refulting fimple Equation. [Or fometimes the three firft Terms may be retain'd, and the Value of p may be more accurately found from the refulting. Quadratick Equation ; \&c.] This new Approximation, together with a new Supplement q, muft be fubftituted inftead of p in this laft fupplemental Equation, in order to form a fecond, whofe Root will be q. And the fame things may be obferved of this fecond fupplemental Equation as of the firft; and its Root, or an Approximation to it, may be difcover'd after the fame manner. And thus the Root of the given Equation may be profecuted as far as we pleafe, by finding new fupplemental Equations, the Root of every one of which will be a correction to the preceding Supplement.

So in the prefent Example $y^{3}-2 y-5=0$, 'tis ealy to perceive, that $y=2$ fere ; for $2 \times 2 \times 2-2 \times 2=4$, which fhould make 5 . Therefore let p be the Supplement of the Root, and it will be $y=$ $2+p$, and therefore by fubftitution $-1+10 p+6 p^{2}+p^{2}=0$. As p is here fuppos'd to be much lefs than the Approximation 2,
by this fubfitution an Equation will be form'd, in which the Terms: will gradually decreafe, and fo much the fafter, ceteris paribus, as 2 is greater than p. So taking the two firft Terms, $-\mathrm{I}+\mathrm{IOp}=0$, fere, or $p=\frac{1}{T}$ fere ; or affuming a fecond Supplement q, 'tis $p=\frac{1}{\mathrm{~T} O}+q$ accurately. This being fubftituted for p in the laft Equation, it becomes $0,61+11,23 q+6,3 q^{2}+q^{3}=0$, which is a new Supplemental Equation, in which all the Terms are farther deprefs'd, and in which the Supplement q will be much lefs than the former Supplement p. Therefore it is $0,61+11,23 q=0$, ferè, or $q=-\frac{0,61}{11,23}$ ferè, or $q=-0,0054+r$ accuratè, by affuming r for the third Supplement. This being fubftituted will give $0,00054155+\mathrm{II}, \mathrm{I} 62 r, 8 \mathrm{cc}=0$, and therefore $r=-\frac{0,00054155}{11,16 z}$ $=-0,00004^{8} 52,8 c \mathrm{c}$. So that at laft $y=2+p=$ stc. or $y=$ 2,09455148, \&c.

And thus our Author's Method proceeds, for finding the Roots of affected Equations in Numbers. Long after this was wrote, Mr. Raphfon publifh'd his Analyis Aquationum univerfalis, containing a Method for the Solution of Numeral Equations, not very much different from this of our Author, as may appear by the following Comparifon.

To find the Root of the Equation $y^{3}-2 y=5$, Mr. Raphfon would proceed thus. His firft Approximation he calls g, which he takes as near the true Root as he can, and makes the Supplement x, fo that he has $y=5+x$. Then by Subftitution $g^{3}+3 g^{2} x+3 g^{2}+x^{3}=5$, - $2 g$ - 2
or if $g=2$, 'tis $10 x+6 x^{3}+x^{3}=1$, to determine the Supplement x. This being fuppofed fmall, its Powers may be rejected, and therefore $10 x=1$, or $x=0,1$ nearly. This added to g or 2, makes a new $g=2,1$, and x being ftill the Supplement, 'tis $y=$ $2,1+x$, which being fubftituted in the original Equation $y^{3}-2 y$ $=5$, produces $11,23^{x}+6,3 x^{2}+x^{3}=-0,6 \mathrm{I}$, to determine the new Supplement x. He rejects the Powers of x, and thence derives $x=\frac{-0,061}{11,23}=-0,0054$, and confequently $y=2,0946$, which not being exact, becaufe the Powers of x were rejected, he makes the Supplement again to be x, fo that $y=2,0946+x$, which being fubftituted in the Original Equation, gives $111,162 x+8 x c=$ $-0,00054155$. Therefore to find the third Supplement x, he has $x=\frac{-0,00054155}{11,162}=-0,00004852$, fo that $y=2,0946+x=$ 2,09455 148, \&c. and fo on.

By this Procefs we may fee how nearly thefe two Methods agree, and wherein they differ. For the difference is only this, that our Author conftantly profecutes the Refidual or Supplemental Equations, to find the firft, fecond, third, Egc. Supplements to the Root: But Mr. Rapbjon continually corrects the Root itfelf from the fame fupplemental Equations, which are formed by fubftituting the corrected Roots in the Original Equation. And the Rate of Convergency will be the fame in both.

In imitation of thefe Methods, we may thus profecute this Inquiry after a very general manner. Let the given Equation to be refolved be in this form $a y^{m}+b y^{m-x}+c y^{m-2}+d y^{m-3}, \delta c c .=0$, in which fuppofe P to be any near Approximation to the Root y, and the little Supplement to be p. Then is $y=\mathrm{P}+p$. Now from what is fhewn before, concerning the raifing of Powers and extracting Roots, it will follow that $y^{m}=\overline{\mathrm{P}+p^{m}}=\mathrm{P}^{m}+m \mathrm{P}^{m-1} p$, \&c. or that thefe will be the two firft Terms of y^{m}; and all the reft, being multiply'd into the Powers of p, may be rejected. And for the fame reafon $y^{m-1}=\mathrm{P}^{m-1}+\overline{m-1} \mathrm{P}^{m-2} p, \& c . y^{m-2}=\mathrm{P}^{m-2}+$ $\overline{m-2} \mathrm{P}^{m-3} p, \& c$. and fo of all the reft. Therefore thefe being fubftituted into the Equation, it will be
$\left.\begin{array}{l}a \mathrm{P}^{m}+m a \mathrm{P}^{m-s} p, \& c \mathrm{c} . \\ +b \mathrm{P}^{m-1}+m-1 b \mathrm{P}^{m-2} p, \& c . \\ \left.+c \mathrm{P}^{m-2}+m-2 c \mathrm{P}^{m-3} p, \& c .\right\}=0 ; \text { Or dividing by } \mathrm{P}^{m} \text {, } \\ +d \mathrm{P}^{m-3}+m-3 d \mathrm{P}^{m-4} p, \& c . \\ \& c \mathrm{cc} .\end{array}\right\}$
$a+6 \mathrm{P}^{-3}+c \mathrm{P}^{-2}+d \mathrm{P}^{-3}, \delta \tau \mathrm{c} .+m a \mathrm{P}^{-1} p+\overline{m-1} b \mathrm{P}^{-}=p+m-2 c \mathrm{P}^{-3} p$ $+\overline{m-3} d \mathrm{P}-4 p, \& \mathrm{c}=0$. From whence taking the Value of p,

To reduce this to a more commodious form, make $\mathrm{P}=\frac{\mathrm{B}}{\mathrm{B}}$, whence $\mathrm{P}^{-\mathrm{s}}=\mathrm{A}^{-1} \mathrm{~B}, \mathrm{P}^{-2}=\mathrm{A}^{-2} \mathrm{~B}^{2}$, \& c c . which being fubftituted, and alfo multiplying the Numerator and Denominator by $\mathrm{A}^{\text {²}}$, it will be
 be a nearer Approach to the Root y, than $\frac{A}{B}$, or P, and fo much the..
the nearer as $\frac{A}{\bar{B}}$ is near the Root. And hence we may derive a very convenient and general Theorem for the Extraction of the Roots of Numeral Equations, whether pure or affected, which will be this.
Let the general Equation $a y^{m}+b y^{m-1}+c y^{m-2}+d y^{m-3}$, $\delta c c$. $=0$ be propofed to be folved; if the Fraction $\frac{A}{B}$ be aflumed as near the Root y as conveniently may be, the Fraction
 nearer Approximation to the Root. And this Fraction, when computed, may be, ufed inftead of the Fraction $\frac{A}{\bar{B}}$, by which means a nearer Approximation may again be had; and fo on, till we approach as near the true Root as we pleafe.
This general Theorem may be conveniently refolved into as many particular Theorems as we pleafe. Thus in the Quadratick Equation $y^{2}+b y=c$, it will be $y=\frac{A^{2}+\mathrm{B}^{2}}{2 A+b \mathrm{~B} \times \mathrm{B}}$, ferè. In the Cubick Equation $y^{3}+b y^{2}+c y=d$, it will be $y=\frac{\overline{2 A+b B} \times A^{2}+a B^{3}}{\frac{3 A^{-}+2 b A B+C B^{2}}{}+B}$, ferè. In the Biquadratick Equation $y^{4}+b y^{3}+c y^{2}+d y=e$, it will be $y=\frac{\frac{3^{2}+2 b A B+C B \cdot}{A^{2}} \times A^{2}+C B 4}{4^{3}+3^{\circ} A^{2} B+2 C A B^{2}+a B^{3} \times B}$, ferè. And the like of higher Equations.
For an Example of the Solution of a Quadratick Equation, let it be propofed to extract the Square-root of 12 , or let us find the value of y in this Equation $y^{2} *=12$. Then by comparing with the general formula, we flall have $b=0$, and $c=12$. And taking 3 for the firft approach to the Root, or making $\frac{A}{B}=\frac{3}{1}$, that is, $A=3$ and $B=I$, we thall have by Subftitution $y=$ $\frac{9+12}{6}=\frac{7}{2}$, for a nearer Approximation. Again, making $\mathrm{A}=7$ and $\mathrm{B}=2$, we flall have $y=\frac{49+48}{14 \times 2}=\frac{9}{2} \frac{2}{2}$ for a nearer Approximation. Again, making $\mathrm{A}=97$ and $\mathrm{B}=28$, we fhall have $y=$ $\frac{\overline{971}{ }^{2}+12 \times 281^{2}}{194 \times 28}=\frac{18817}{543^{2}}$ for a nearer Approximation. Again, making $\mathrm{A}=18817$ and $\mathrm{B}=5432$, we fhall have $y=\frac{\overline{1881,71^{2}}+12 \times \overline{43321^{2}}}{377034 \times 543^{2}}$ $=\frac{7081,58977}{204427888}$ for a nearer Approximation. And if we go on in the fame method, we may find as near an Approximation to the Root as we pleafe.

This Approximation will be exhibited in a vulgar Fraction, which, if it be always kept to its lowert Terms, will give the Root of the Equation in the fhorteft and fimpleft manner. That is, it will always be nearer the true Root than any other Fraction whatever, whofe Numerator and Denominator are not much larger Numbers than its own. If by Divifion we reduce this laft Fraction to a Decimal, we fhall have 3,464 Ior6r 513775459 for the Square-root of 12 , which exceeds the truth by lefs than an Unit in the laft place.

For an Example of a Cubick Equation, we will take that of our Author $y^{3} *-2 y=5$, and therefore by Comparifon $b=0$, $c=-2$, and $d=5$. And taking 2 for the firft Approach to the Root, or making $\frac{A}{B}=\frac{2}{T}$, that is, $A=2$ and $B=1$, we fhall have by Subftitution $y=\frac{16+5}{12-2}=\frac{2}{4} \frac{1}{0}$ for a nearer Approach to the Root. Again, make $A=2 i$ and $B=10$, and then we Thall have $y=\frac{9261+2500}{6615-1000}=\frac{11761}{5615}$ for a nearer Approximation. Again, make $A={ }_{11761}$ and $B=5615$, and we thall have $y=\frac{2 \times \overline{11761}{ }^{3}+5 \times \overline{5615} 1^{3}}{3 \times \overline{117^{61} 1^{2}} \times 5615-2 \times \overline{561513}}=\frac{4158744325037}{1975957316495}$ for a neärer $A p=$ proximation. And fo we might proceed to find as near an Approximation as we think fit. And when we have computed the Root near enough in a Vulgar Fraction, we may then. (if we pleafe) reduce it to a Decimal by Divifion. Thus in the prefent Example we fhall have $y=2,09455148 \mathrm{r} 7 \mathrm{I}$, \&c. And after the fame manner we may find the Roots of all other numeral affected Equations, of whatever degree they may be..

Sect. IV. The Refolution of Specious Equations by infinite Series; and firt for deternining the forms of the Series, and their initial Approximations.
23,24 . ROM the Refolution of numeral affected Equations, our Author proceeds to find the Roots of Literal, Specious, or Algebraical Equations alfo, which Roots are to be exhibited by an infinite converging Series; confifting of fimple Terms. Or they are to be exprefs'd by Numbers belonging to a general Arithmetical Scale, as has been explain'd before, of which the Root is denoted by x or \approx. The affigning or chufing this Root is what he means here, by diftinguifhing one of the literal Coefficients from the reft, if there are feveral. And this is done by ordering or difpoling
the Terms of the given Equation, according to the Dimenfions of that Letter or Coefficient. It is therefore convenient to chufe fuch a Root of the Scale, (when choice is allow'd,) as that the Series may converge as faft as may be. If it be the leaft, or a Fraction lefs than Unity, its afcending Powers muft be in the Numerators of the Tcrms. If it be the greateft quantity, then its afcending Powers muft be in the Denominators, to make the Series duly converge. If it be very near a given quantity, then that quantity may be conveniently made the firft Approximation, and that fmall difference, or Supplement, may be made the Root of the Scale, or the converging quantity. The Examples will make this plain.

25, 26. The Equation to be refolved, for conveniency-fake, fhould always be reduced to the fimpleft form it can be, before its Refolution be attempted; for this will always give the leaft trouble. But all the Reductions mention'd by the Author, and of which he gives us Examples, are not always neceffary, tho' they may be often convenient. The Method is general, and will find the Roots of Equations involving fractional or negative Powers, as well as of other Equations, as will plainly appear hereafter.

27,28 . When a literal Equation is given to be refolved, in diftinguifhing or affigning a proper quantity, by which its Root is to converge, the Author before has made three cafes or varieties; all which, for the fake of uniformity, he here reduces to one. For becaufe the Series muft neceffarily converge, that quantity muft be as fmall :as poffible, in refpect of the other quantities, that its afcending Powers may continually diminifh. If it be thought proper to chufe the greateft quantity, inftead of that its Reciprocal muft be introduced, which will bring it to the foregoing cafe. And if it approach near to a given quantity, then their fmall difference may be introduced into the Equation, which again will bring it to the firft cafe. So that we need only purfue that cafe, becaufe the Equation is always fuppos'd to be reduced to it.

But before we can conveniently explain our Author's Rule, for finding the firf Term of the Series in any Equation, we muft confider the nature of thofe Numbers, or Expreffions, to which thefe literal Equations are reduced, whofe Roots are required ; and in this Inquiry we thall be much affifted by what has been already difcourfed of Arithmetical Scales, In affected Equations that were purely numeral, the Solution of which was juft now taught, the feveral Powers of the Root were orderly difpoied, according to a fingle or fimple Arithmetical Scale, which proceeded only italongum, and was there
fufficient for their Solution. But we muft enlarge our views in thefe literal affected Equations, in which are found, not only the Powers of the Root to be extracted, but alfo the Powers of the Root of the Scale, or of the converging quantity, by which the Series for the Root of the Equation is to be form'd; on account of each of which circumftances the Terms of the Equation are to be regularly difpofed, and therefore are to conftitute a double or combined Arithmetical Scale, which mult proceed both ways, in latum as well as in longum, as it were in a Table. For the Powers of the Root to be extracted, fuppofe y, are to be difpofed in longum, fo as that their Indices may conftitute an Arithmetical Progreffion, and the vacancies, if any, may be fupply'd by the Mark *. Alfo the Indices of the Powers of the Root, by which the Series is to converge, fuppofe x, are to be difpofed in latum, fo as to conftitute an Arithmetical Progreffion, and the vacancies may likewife be fill'd up by the fame Mark *, when it Chall be thought neceffary. And both thefe together will make a combined or double Arithmetical Scale. Thus if the Equation $y^{6}-5 x y^{5}+\frac{x^{3}}{a} y^{4}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}+b^{2} x^{4}=0$, were given, to find the Root y, the Terms may be thus difpofed :

Alfo the Equation $y^{5}-b y^{2}+9 b x^{2}-x^{3}=0$ thould be thus difpofed, in order to its Solution:

$$
\left.\begin{array}{rl}
y^{5} *-b y^{2} * & * \\
& +g^{*} b x^{2} \\
& -x^{3}
\end{array}\right\}=0
$$

And the Equation $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$ thus:

$$
\left.\begin{array}{rc}
y^{3}+a^{2} y & -2 a^{i} \\
+a x y & \\
-x^{3}
\end{array}\right\}=0
$$

$$
\begin{gathered}
* \\
x^{*} y^{y} \\
\text { Equations. } \\
\text { C } c
\end{gathered}
$$

The Method of Fiuxions,

When the Terms of the Equation are thus regularly difpos'd, it is then ready for Solution; to which the following Speculation will be a farther preparation.
29. This ingenious contrivance of out Author, (which we may call Tabulating the Equation, for finding the firft Term of the Root, (which may indeed be extended to the finding all the Terms, or the form of the Series, or of all the Series that may be derived from the given Equation,) cannot be too much admired, or too carefully inquired into: The reafon and foundation of which may be thus generally explain'd from the following Table, of which the Conftruction is thus.

				$2 a+65$	$3 a+6 b$	$4 a+6 b$	$5 a+6 b$	$6 a+6 b$	$7 a+6 b$
$\|-2 a+5 b\|$	$\|-a+5 b\|$	$+5{ }^{6}$	$a+5 b$	$\|2 a+5 b\|$	$3 a+5 b$	$4 a+5 b$	$\|5 a+5 b\|$	$6 a+5 b$	$7 a+5^{b}$
$-2 a+4 b$	$-a+4 b$	+4b	$a+4 b$	$\left\|2 a+4^{b}\right\|$	$\|3 a+4 b\|$	$\left\|4^{a}+4 b\right\|$	$5 a+4 b$	$6 a+4 b$	$7 a+4 b$
- $2 a+3$	$-a+3 ?$	$+3^{6}$	$a+3 b$	$\|2 a+3 b\|$	$3 a+3 b$	$14 a+36$	15a+3	$6 r^{2}+3 b$	$7 a+3 b$
$-2 a+2 b$	$\|-a+2 b\|$	$+2 b$	a	$\|2 a+2 b\|$	$\|3 a+2 b\|$	$4 a+2 b$	$5 a+2 b$	$6 a+2 b$	
			$x x^{-}$	$-2 a+b$	3	$4 a+b$	15	6	7
		O.		$2 a$:6a	$7{ }^{\text {a }}$
$-2 a-b$	$-b$	-b		$2 a-b$.	$3 a-b$	$4 a-b$	$5 a-b$	-6	$7 a-b$
2a-2b	-2	-25	$a-2 b$	$2 a-2 b$	$3 a-2 b$	$4 a-2 b$	$5 a-2 b$	-2b	$7 a-2 b$
2a-3b			$a-3 b$	$2 a-3 b]$	-3b	$4 a-3 b$	$5 a-3 b$	$6 a-3 b$	$7 a-3 b$

In a Plare draw any number of Lines, parallel and equidiftant, and others at right Angles to them, fo as to divide the whole Space, as far as is neceffary; into little equal Parallelograms. Affume any one of thefe, in which write the Term 0 , and the Terms $a, 2 a, 3 a, 4 a$, \&c. in the fueceeding Parallelograms to the right hand, as alfo the Terms - $a,-2 a,-3 a ;$, \&c. to the left hand. Over the Term a, in the fame Column, write the Terms $b, 2 b, 3 b, 4 b, \& c c$. fucceffively, and the Terms $-b,-2 b,-3 b, \& c$. underneath. And thefe we may call primary Terms. Now to infert its proper. Term in any : other affign'd Parallelogram, add the two primary' Terms together that fand over-againft it each way, and write the Sum in the given Parallelogram. And thus all the Parallelograms being filld, asufar as there is occafion every way, the whole. Space will
will become a Table, which may be called a combined Aritbmetical Progrefion in plano, compofed of the two general Numbers a and b. of which thefe following will be the chief properties.

Any Row of Terms, parallel to the primary Series $0, a, 2 a, 3 a$, \&oc. will be an Arithmetical Progreffion, whofe common Difference is a; and it may be any fuch Progreffion at pleafure. Any Row or Column parallel to the primary Series $0, b, 2 b, 3 b, \& c$. will be an Arithmetical Progreffion, whofe common difference is b; and it may be any fuch Progreffion. If a ftrait Ruler be laid on the Table, the Edge of which Ghall pafs thro' the Centers of any two Parallelograns whatever ; all the Terms of the Parallelograms, whofe Centers fhall at the fame time touch the Edge of the Ruler, will conftitute an Arithmetical Progreffion, whofe common difference will confift of two parts, the firft of which will be fome Multiple of a, and the other a Multiple of b. If this Progreffion be fuppos'd to proceed inferior a verfis, or from the upper Term or Parallelogram towards the lower; each part of the common difference may be feparately found, by fubtracting the primary Term belonging to the lower, from the primary Term belonging to the upper Parallelogram. If this common difference, when found, be made equal to nothing, and thereby the Relation of a and b be determined; the Progreffion degenerates into a Rank of Equals, or (if you pleafe) it becomes an Arithmetical Progreffron, whofe common difference is infinitely little. In which cafe, if the Ruler be moved by a parallel motion, all the Terms of the Parallelograms, whofe Centers fhall at the fame time be found to touch the Edge of the Ruler, fhall be equal to each other. And if the motion of the Ruler be continued, fuch Terms as at equal diftances from the firft fituation are fucceffively found to touch the Ruler, fhall form an Arithmetical Progreffion. Laftly, to come nearer to the cafe in hand, if any number of thefe Parallelograms be mark'd out and diftinguifh'd from the reft, or affign'd promifcuoufly and at pleafure, through whofe Centers, as before, the Edge of the Ruler fhall fucceffively pafs in its parallel motion, beginning from any two (or more) initial or external Parallelograms, whofe Terms are made equal; an Arithmetical Progreffion may be found, which fhall comprehend and take in all thofe promifcuous Terms, without any regard had to the Terms that are to be omitted. Thefe are fome of the properties of this Table, or of a combined Arithmetical Progreffion in plano, by which we may eafily underftand our Author's expedient, of Tabulating the given Equation, and may derive the neceflary Confequen--es from it.

For when the Root y is to be extracted out of a given Equation, confifting of the Powers of y and x any how combined together promifcuoufly, with other known quantities, of which x is to be the Root of the Scale, (or Series,) as explain'd before; fuch a value of y is to be found, as when fubftituted in the Equation inftead of y, the whole fhall be deftroy'd, and become equal to nothing. And firft the initial Term of the Series, ${ }^{\text {' }}$ or the firf Approximation, is to be found, which in all cafes may be Analytically reprefented by Ax $x^{m i}$; or we may always put $y=\mathrm{A} x^{m}, \& c$. So that we fhall have $y^{2}=$ $\mathrm{A}^{2} x^{2 m}, \& \mathrm{c} . y^{3}=\mathrm{A}^{3} x^{3 m}, \& \mathrm{c} . y^{4}=\mathrm{A}^{4} x^{4 m}, \& c$. And fo of other Powers or Roots. Thefe when fubftituted in the Equation, and by that means compounded with the feveral Powers of x (or z) already found there, will form fuch a combined Arithmetical Progreffion in plano as is above defcribed, or which may be reduced to fuch, by making $a=m$ and $b=1$. Thefe Terms therefore, according to the nature of the Equation, will be promifcuoufly difperfed in the Table; but the vacancies may always be conceived to be fupply'd, and then it will have the properties before mention'd. That is, the Ruler being apply'd to two (or perhaps more) initial or external Terms, (for if they were not external, they could not be at the beginning of an Arithmetical Progreffion, as is neceffarily required ${ }_{j}$) and thofe Terms being made equal, the general Index m will thereby be determined, and the general Coefficient A will alfo be known, If the external Terms made choice of are the loweft in the Table, which is the cafe our Author purfues, the Powers of x will proceed by increafing. But the higheft may be chofen, and then a Series will be found, in which the Powers of x will proceed by decreafing. And there may be other cafes of external Terms, each of which will commonly afford a Series. The initial Index being thus found, the other compound Indices belonging to the Equation will be known alfo, and an Arithmetical Progreffion may be found, in which they are all comprehended, and confequently the form of the Series will be known.

Or inftead of Tabulating the Indices of the Equation, as above, it will be the fame thing in effect, if we reduce the Terms themfelves to the form of a combined Arithmetical Progreflion, as was fhewn before. But then due care muft be taken, that the Terms may be rightly placed at equal diftances; otherwife the Ruler cannot be actually apply'd, to difcover the Progreffions of the Indices, as may be done in the Parallelogram.

For the fake of greater perficuity, we will reduce our general Table, or combined Arithmetical Progreffion in plano, to the particular cafe, in which $a=m$ and $b=1$; which will then appear thus:

Now the chief properties of this Table, fubfervient to the prefent purpofe, will be thefe. If any Parallelogram be felected, and another any how below it towards the right hand, and if their included Numbers be made equal, by determining the general Number m, which in this cafe will always be affirmative; alfo if the Edge of the Ruler be apply'd to the Centers of thefe two Parallelograms; all the Numbers of the other Parallelograms, whofe Centers at the fame time touch the Ruler, will likewife be equal to each other. Thus if the Parallelogram denoted by $m+4$ be felected, as alfo the Parallelogram $3 m+2$; and if we make $m+4=3 m+2$, we fhall have $m=1$. Alfo the Parallelograms $-m+6, m+4,3 m+2,5 m$, $7^{m-2}-\& c$. will at the fame time be found to touch the Edge of the Ruler, every one of which will make 5 , when $m=I$.

And the fame things will obtain if any Parallelogram be felected, and another any how below it towards the left-hand, if their included Numbers be made equal, by determining the general Number m, which in this cafe will be always negative. Thus if the Parallelogram denoted by $5 m+4$ be felected, as alfo the Parallelogram $4 m+2$; and if we make $5 m+4=4 m+2$, we hall have $m=-2$. Alfo the Parallelograms $6 m+6,5 m+4,4 m+2,3 m, 2 m-2$, \&c.
will be found at the fame time to touch the Ruler, every one of which will make -6 , when $m=-2$.

The fame things remaining as before, if from the firft fituation of the Ruler it flall move towards the right-hand by a parallel motion, it will continually arrive at greater and greater Numbers, which at equal diftances will form an afcending Arithmetical Progeffion. Thus if the two firft felected Parallelograms be $2 m-1=5 m-3$, whence $m=\frac{1}{3}$, the Numbers in all the correfponding Parallelograms will be $\frac{1}{3}$. Then if the Ruler moves towards the right-hand, into the parallel fituation $3^{m+1}, 6 m-1, \& c$. thefe Numbers will each be 3. If it moves forwards to the fame diftance, it will arrive at $4 m+3,7^{m}+1$, \&c. which will each be $5_{\frac{2}{8}}$. If it moves forward again to the fame diftance, it will arrive at $5 m+5,8 m+3$, \&c. which will each be $8 \frac{1}{3}$. And fo on. But the Numbers $\frac{1}{3}, 3,5 \frac{2}{3}$, $8 \frac{1}{3}$, \&c. are in an Arithmetical Progreffion whofe common difference is $2 \frac{1}{3}$. And the like, mutatis mutandis, in other circumftances.

And hence it will follow \grave{e} contrà , that if from the firft fituation of the Ruler, it moves towards the left-hand by a parallel motion, it will continually arrive at leffier and leffer Numbers, which at equal diftances will form a decreafing Arithmetical Progreffion.
But in the other fituation of the Ruler, in which it inclines downwards towards the left-hand, if it be moved towards the right-hand by a parallel motion, it will continually arrive at greater and greater Numbers, which at equal diftances will form an increafing Arithmetical Progreffion. Thus if the two firft felected Numbers or Parallelograms be $8 m+\mathrm{I}=5^{m}-\mathrm{I}$, whence $m=-\frac{2}{3}$, and the Numbers in all the correfponding Parallelograms will be - $4 \frac{1}{3}$. If the Ruler moves upwards into the parallel fituation $5 m+2,2 m, \& c$. thefe Numbers will each be - $1 \frac{x}{3}$. If it more on at the fame diftance, it will arrive at $2 m+3,-m+1$, \&cc. which will each be $1 \frac{2}{3}$. If it move forward again to the fame diftance, it will arrive at $-m+4$, $-4 m+2$, \&c. which will each be $4 \frac{2}{3}$. And fo on. But the Numbers $-4 \frac{1}{3},-1 \frac{1}{3}, 1 \frac{2}{3}, 4 \frac{2}{3}, \& c$ cor $-\frac{13}{3},-\frac{4}{3}, \frac{5}{3}, \frac{14}{3}$, \&c. are in an in creafing Arithmetical Progreffion, whofe common difference is $\frac{9}{3}$, or 3 .

And hence it will follow alfo, if in this laft fituation of the Ruler it moves the contrary way, or towards the left-hand, it will continually arrive at leffier and leffer Numbers, which at equal diftances will form a decreafing Arithmetical Progreffion.

Now if out of this Table we fhould take promifcuounly any number of Parallelograms, in their proper places, with their refpective

Numbers included, neglecting all the reft; we fhould form fome certain Figure, fuch as this, of which thefe would be the properties,

The Ruler being apply'd to any two (or perhaps more) of the Parallelograms which are in the Ambit or Perimeter of the Figure, that is, to two of the external Parallelograms, and their Numbers being made equal, by determining the general Number m; if the Ruler paffes over all the reft of the Parallelograms by a parallel motion, thofe Numbers which at the fame time coine to the Edge of the Ruler will be equal, and thofe that come to it fucceffively will form an Arithmetical Progreflion, if the Terms fhould lie at equal diftances; or at leaft they may be reduced to fuch, by fupplying any Terms that may happen to be wanting.

Thus if the Ruler fhould be apply'd to the two uppermoft and external Parallelograms, which include the Numbers 3^{m+5} and 5^{m+5}, and if they be made equal, we fhall have $m=0$, fo that each of thefe Numbers will be 5. The next Numbers that the Ruter will arrive at will be $m+3,4 m+3,6 m+3$, of which each will be 3. The laft are $2 m-1,5 m+1$, of which each is I . So that here $m=0$, and the Numbers arifing are $5,3,1$, which form a decreafing. Arithmetical Progreffion, the common difference of which is 2. And if there had been more Parallelograms, any how difpofed, their Numbers would have been comprehended by this Arithmetical Progreffion, or at leaft it might have been interpolated with other Terms, fo as to comprehend them all, however promifcuoully and irregularly they might have been taken.

Thus fecondly, if the Ruler be apply'd to the two external Parallelograms 5^{m+5} and $6 m+3$, and if thefe Numbers be made equal, we hall have $n=2$, and the Numbers themfelves will be each 15. The three next' Numbers" which the Ruler will arrive at
will be each II, and the two laft will be each 5. But the Numbers 15, II, 5, will be comprehended in the decreafing Arithmetical Progreffion 15, 13, $11,9,7,5$, whofe common difference is 2.

Thirdly, if the Ruler be apply'd to the two external Parallelograms $6 m+3$ and $5 m+1$, and if there Numbers be made equal, we thall have $m=-2$, and the Numbers will be each - 9 . The two next Numbers that the Ruler will arrive at will be each - 5 , the next will be - 3, the next - I, and the laft +1 . All which will be comprehended in the afcending Arithmetical Progreffion - $9,-7$, $-5,-3,-1,+1$, whofe common difference is 2 .

Fourthly, if the Ruler be apply'd to the two loweft and external Parallelograms $2 m+1$ and $5 m+1$, and if they be made equal, we Chall have again $m=0$, fo that each of there Numbers will be 1 . The next three Numbers that the Ruler will approach to, will each be 3 , and the laft 5 . But the Numbers 1, 3, 5, will be comprehended in an afcending Arithmetical Progreffion, whofe common difference is 2 .

Fifthly, if the Ruler be apply'd to the two externa! Parallelograms $m+3$ and $2 m+1$, and if thefe Numbers be made equal, we Chall have $m=2$, and the Numbers themfelves will be each 5. The three next Numbers that the Ruler will approach to will each be in, and the two next will be each 15 . But the Numbers $5,11,15$, will be comprehended in the afcending Arithmetical Progreffion 5, 7,9, $\mathrm{I}_{1}, 13,15$, of which the common difference is 2 .

Laftly, if the Ruler be apply'd to the two external Parallelograms $3^{m}+5$ and $m+3$, and if there Numbers be made equal, we fhall have $m=-1$, and the Numbers themfelves will each be 2. The next Number to which the Ruler approaches will be o, the two next are each - I, the next - 3, the laft - 4. All which Numbers will be found in the defcending Arithmetical Progreffion 2, 1, 0 , $-1,-2,-3,-4$, whofe common difference is I. And thefe fix are all the poffible cafes of external Terms.

Now to find the Arithmetical Progreffion, in which all thefe refulting Terms fhall be comprehended; find their differences, and the greateft common Divifor of thofe differences fhall be the common difference of the Progreffion. Thus in the fifth cafe before, the refulting Numbers were 5, II, 15 , whofe differences are 6, 4, and their greateft common Divifor is 2. Therefore 2 will be the common difference of the Arithmetical Progreffion, which will include all the refulting Numbers 5, 11, 15, without any fuperfluous Terms. But the application of all this will be beft apprehended from the Examples that are to follow.
30. We have before given the form of this Equation, $y^{0}-5 x y^{3}$ $+\frac{x^{3}}{a} y^{4}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}+b^{2} x^{4}=0$, when the Terms are difpofed according to a double or combined Arithmetical Scale, in order to its Solution. Or obferving the fame difpofition of the Terms, they may be inferted in their refpective Parallelograms, as the Table requires. Or rather, it may be fufficient to tabulate the feveral Indices of x only, when they are derived as follows. Let A. x^{m} reprefent the firf Term of the Series to be form'd for y, as before, or let $y=A x^{m}, \delta x c$. Then by fubftituting this for y in the given Equation, we fhall have $A^{6} x^{6 m}-5^{A^{5}} x^{5 m+1}+\frac{A_{4}}{a} x^{4 m+3}-7 a^{2} A^{2} \cdot x^{m+1}+$ $6 a^{3} x^{3}+b^{2} x^{4}, \& x c=0$. Thefe Indices of x, when felected from the general Table, with their refpective Parallelograms, will ftand thus:

Here if we would have an afcending Series for the Root y, we may apply the Ruler to the three external Terms $3,2 m+2,6 m$, which being made equal to each other, will give $m=\frac{1}{2}$, and each of the Numbers will be 3. The Ruler in its parallel motion will next arrive at $5^{m}+\mathrm{r}$, or $3^{\frac{x}{2}}$; then at 4 ; then at $4^{m}+3$, or 5 ; which Numbers will be comprehended in the Arithmetical Progreffion $3,3 \frac{1}{2}, 4,4 \frac{1}{2}, 5$, whofe common difference is $\frac{1}{2}$. This therefore will be the common difference of the Progreffion of the Indices, in the Series to be derived for y. So that now we intirely know the form of the Series, which will refult from this Cafe. For if A, B, $\mathrm{C}, \mathrm{D}, \& \mathrm{cc}$. be put to reprefent the feveral Coefficients of the Series in order, and as the firft Index m is found to be $\frac{1}{2}$, and the common difference of the afcending Series is alfo $\frac{1}{2}$, we thall have here $y=$ $\mathrm{A} x^{\frac{1}{2}}+\mathrm{B} x+\mathrm{C} x^{\frac{3}{2}}+\mathrm{D} x^{2}, \delta \varepsilon \mathrm{c}$.

As to the Value of the firf Coefficient A, this is found by putting the initial or external Terms of the Parallelogram equal to nothing.

D d
This

This here will give the Equation $A^{6}-7 a^{2} A^{2}+6 a^{3}=0$, which has there fix Rocts, $A= \pm \sqrt{ } a, A= \pm \sqrt{ } 2 a, A= \pm \sqrt{ }-3 a$, of which the two laft are impoffible, and to be rejected. Of the others any one may be taken for A , according as we would profecute this or that Root of the Equation.

Now that this is a legitimate Method for finding the firft Approximation $A x^{m}$, may appear from confidering, that when the Terms of the Equation are thus ranged, according to a double Arithmetical Scale, the initial or external Terms, (each Care in its turn,) become the moft confiderable of the Series, and the reft continually decreafe, or become of lefs and lefs value, according as they recede more and more from thofe initial Terms. Confequently they may be all rejected, as leaft confiderable, which will make thofe initial or external Terms to be (nearly) equal to nothing ; which Suppofition gives the Value of A, or of $A x^{m}$, for the firft Approximation. And this Suppofition is afterwards regularly purfued in the fubrequent Operations, and proper Supplements are found, by means of which the remaining Terms of the Root are extracted.

We may try here likewife, if we can obtain a defcending Series for the Root y, by applying the Ruler to the two external Terms $4^{m}+3$ and $6 m$; which being made equal to each other, will give $m=\frac{3}{2}$, and hence each of the Numbers will be 9 . The Ruler in its motion will next arrive at $5 m+1$, or $8 \frac{1}{2}$. Then at $2 m+2$, or 5. Then at 4. And laftly at 3. But thefe Numbers $9,8 \frac{1}{2}, 5,4$, 3, will be comprehended in an Arithmetical Progreffion, of which the common difference is $\frac{\pi}{2}$. So that the form of the Series here will be $y=\mathrm{A} x^{\frac{3}{2}}+\mathrm{B} x+\mathrm{C} x^{\frac{1}{2}}+\mathrm{D} x^{\circ}, 2 \mathrm{c}$. But if we put the two external Terms equal to nothing, in order to obtain the firt Approximation, we fhall have $A^{6}+\frac{A^{4}}{a}=0$, or $A^{2}+\frac{1}{a}=0$, which will afford none but impoffible Roots. So that we can have no initial Approximation from this fuppofition, and confequently no Series.

But laftly, to try the third and laft cafe of external Parallelograms, we may apply the Ruler to 4 and $4 m+3$, which being made equal, will give $m=\frac{1}{4}$, and each of the Numbers will be 4. The next Number will be 3 ; the next $2 m+2$, or $2 \frac{1}{2}$; the next $5 m+1$, or $2 \frac{x}{4}$; the laft will be 6 m , or $\mathrm{J} \frac{x}{2}$. But the Numbers $4,3,2 \frac{1}{2}, 2 \frac{x}{4}$, ${ }_{1} \frac{4}{2}$, will all be found in a decreafing Arithmetical Progreffion, whofe common difference will be $\frac{x}{4}$. So that $\mathrm{A} x^{\frac{3}{4}}+\mathrm{B} x^{0}+\mathrm{C} x^{-\frac{1}{4}}+\mathrm{D} x^{-\frac{1}{2}}$, \&c. may reprefent the form of this Series, if the circumftances of
the Coefficients will allow of an Approximation from hence. But if we make the initial Terms equal to nothing, we fhall have $\frac{A_{4}}{a}$ $+b^{2}=0$, which will give none but impoffible Roots. So that we can have no initial Approximation from hence, and confequently no Series for the Root in this form.
31. The Equation $y^{5}-b y^{2}+9 b x^{2}-x^{3}=0$, when the Terms are difpofed according to a double Arithmetical Scale, will have the form as was thewn before; from whence it may be known, what cafes of external Terms there are to be try'd, and what will be the circumftances of the feveral Series for the Root y, which may be derived from hence. Or otherwife more explicitely thas. Putting $\mathrm{A} x^{m i}$ for the firft Term of the Series y, this Equation will become by Subftitution $A^{5} x^{5 m}-b A^{2} x^{2 m}+9 b x^{2}-x^{3}, \delta x c .=0$. So that if we take thefe Indices of x out of the general Table, they will ftand as in the following Diagram.

Now in order to have an afcending Series for y, we may apply the Ruler to the two external Parallelograms 2 and $2 m$, which therefore being made equal, will give $n=1$, and each of the Numbers will be 2. The Ruler then in its parallel
 progrefs will firft come to 3 , and then to 5 m , or 5 . But the Numbers 2, 3,5, are all contain'd in an afcending Arithmetical Progreffion, whofe common difference is I . Therefore the form of the Series will here be $y=\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}$, \&c. And to determine the firf Coefficient A, we fhall have the Equation - $b A^{2} x^{2}+9 b x^{2}=0$, or $A=9$, that is $A= \pm 3$. So that either $+3 x$, or $-3 x$ may be the initial Approximation, according as we intend to extract the affirmative or the negative Root.

We thall have another cafe of external Terms, and perhaps another afcending Series for y, by applying the Ruler to the Parallelograms 2 m and 5 m , which Numbers being made equal, will give $m=0$. (For by the way, when we put $2 m=5 m$, we are not at liberty to argue by Divifion, that $2=5$, becaufe this would bring us to an abfurdity. And the laws of Argumentation require, that no Abfurdities muft be admitted, but when they are inevitable, and when they are of ufe to fhew the falfity of fome Suppofition. We Thould therefore here argue by Subtraction, thus: Becaure $5 m=2 m$, then $5 m-2 m=0$, or $3 m=0$, and therefore $m=0$. This Caution I thought the more neceffary, becaufe I have obferved fome,
who would lay the blame of their own Abfurdities upon the Analy'tical Art. But thefe Abfurdities are not to be imputed to the Art, but rather to the unfilfulneis of the Artift, who thus abfurdly applies the Principles of his Art.) Having therefore $m=0$, we Chall alfo have the Numbers $2 m=5 m=0$. The Ruler in its parallel motion will next arrive at 2 ; and then at 3 . But the Numbers 0 , 2, 3, will be comprehended in the Arithmetical Progreffion $0,1,2,3$, whofe common difference is I . Therefore $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}, 8 \mathrm{c}$. will be the form of this Series. Now from the exterior Terms A ' $-b \mathrm{~A}^{2}=0$, or $\mathrm{A}^{3}=b$, or $\mathrm{A}=b^{\frac{2}{3}}$, we fhall have the firf Term of the Series.

There is another cafe of external Terms to be try'd, which poffibly may afford a defcending Series for y. For applying the Ruler to the Parallelograms 3 and $5 m$, and making thefe equal, we fhall have $m=\frac{3}{5}$, and each of thefe Numbers will be 3. Then the Ruler will come to 2 ; and laftly $2 m$, or $\frac{6}{5}$. But the Numbers $3,2,1 \frac{1}{5}$, will be comprehended in a defcending Progreffion, whofe common difference is $\frac{1}{5}$. Therefore the form of the Series will be $y=\mathrm{A} x^{\frac{3}{5}}$ $+\mathrm{B} x^{\frac{2}{3}}+\mathrm{C} x^{\frac{5}{5}}+\mathrm{D}$, \& cc. And the external Terms $\mathrm{A}^{5} x^{3}-x^{3}=0$ will give $A=I$ for the firt Coefficient. Now as the two former cafes will each give a converging Series for y in this Equation, when x is lefs than Unity; fo this cafe will afford us a Series when x is greater than Unity; which will converge fo much the fafter, the greater x is fuppofed to be.
32. We have already feen the form of this Equation $y^{3}+a x y+$ aay- $x^{3}-2 a^{3}=0$, when the Terms are difpofed according to a double Arithmetical Scale. And if we take the fictitious quantity A $x^{m / 2}$ to reprefent the firf Approximation to the Root y, we fhall have by fubftitution $A^{2} x^{3 m}+a \mathrm{~A} x^{m+x}+a^{2} A x^{m}-x^{3}-2 a^{3}, b^{2} \mathrm{c}$. $=0$. Thefe Terms, or at leaft thefe Indices of x, being felected out of the general Table, will appear thus.

Now to obtain an afcending Series for the Root y, we may apply the Ruler to the three external Terms o, $m, 3^{m}$, which being made equal, will give $m=0$. Therefore thefe Numbers are each o. In the next place the Ruler will come to $m+1$, or I ; and laftly
 to 3. But the Numbers $0,1,3$, are contain'd in the Arithmetical Progreffion $0,1,2,3$, whofe common difference is 1 . Therefore the form of the Root is $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}$, \&c. Now if the Equation $A^{3}+a^{2} A-2 a^{3}=0$, (which is derived from the initial
initial Terms,) is divided by the factor $A^{2}+a A+2 a^{2}$, it will give the Quotient $\mathrm{A}-a=0$, or $\mathrm{A}=a$ for the initial Term of the Root y.

If we would alfo derive a defcending Series for this Equation, we may apply the Ruler to the external Parallelograms $3,3 m$, which being made equal to each other, will give $n=1$; allo thefe Numbers will each be 3 . Then the Ruler will approach to $m+1$, or 2 ; then to m, or 1 ; laftly to 0 . But the Numbers $3,2,1,0$, are a decreafing Arithmetical Progreflion, of which the common difference is I. So that the form of the Series will here be $y=A x+B+$ $\mathrm{C} x^{-1}+\mathrm{D} x-2$, \&cc. And the Equation form'd by the external Terms will be $A^{3} x^{3}-x^{3}=0$, or $A=1$.
33. The form of the Equation $x^{2} y^{5}-3 c^{4} x y^{2}-c^{5} x^{2}+c^{7}=0$, as exprefs'd by a combined Arithmetical Scale, we have already feen, which will eafily flew us all the varieties of external Terms, with their other Circumftances. But for farther illuftration, putting $\mathrm{A} x^{m}$ for the firft Term of the Root y, we fhall have by fubftitution $\mathrm{A}^{5} \cdot x^{-5 m+z}$ $-3^{4} \mathrm{~A}^{2} x^{2 m+1}-c^{5} x^{2}+c^{7}, 8 c .=0$. Thefe Indices of x being tabulated, will fland thus.

Now to have an afcending Series, we muft apply the Ruler to the two external Terms \circ and 5^{m+2}, which
 being made equal, will give $m=-\frac{2}{5}$, and the two Numbers arifing will be each 0 . The next Number that the Ruler arrives at is $2 m+1$, or $\frac{1}{5}$; and the laft is 2 . But the Numbers $0, \frac{1}{5}, 2$, will be found in an afcending Arithmetical Progreflion, whofe common difference is $\frac{1}{5}$. Therefore $y=A x^{-\frac{2}{5}}$ $+\mathrm{B} x^{\frac{1}{5}}+\mathrm{C}+\mathrm{D} x^{\frac{1}{5}}$, \&c. will be the form of the Root. To determine the firft Coefficient A, we fhall have from the exterior Terms $A^{5}+c^{7}=0$, which will give $A=-\sqrt[5]{c^{7}}=-c^{\frac{7}{5}}$. Therefore the firf Term or Approximation to the Root will be $y=-\sqrt{5} \frac{c^{2}}{a^{2}}$, \&x.

We may try if we can obtain a defcending Series, by applying the Ruler to the two external Parallelograms, whofe Numbers are 2 and $5 m+2$, which being made equal, will give $m=0$, and the fe Numbers will each be 2. The Ruler will next arrive at $2 m+1$, or I; and laftly at 0 . But the Numbers $2,1,0$, form a defending Progreffion, whofe common difference is I. So that the form of the Series will here be $y=A+B x^{-3}+C x^{-2}, \& c c$. And putting the initial
initial Terms equal to nothing, as they fand in the Equation, we thall have $\mathrm{A}^{s} x^{2}-c^{s} x^{2}=0$, or $\mathrm{A}=c$, for the firt Approximation to the Root. And this Series will be accommodated to the cafe of Convergency, when x is greater than c; as the other Series is accommodated to the other cafe, when x is lefs than c.
34. If the propofed Equation be $8 z^{6} y^{3}+a z^{6} y^{2}-27 a^{9}=0$, it may be thus refolved without any preparation. When reduced to our form, it will ftand thus, $\left.8 z^{6} y^{3}+a z^{6} y^{2} \quad{ }_{*}^{*}{ }^{*} 7 a^{9}\right\}=0$; and by putting $y=A z^{m}, \& x$. it will become $\left.8 A^{3} z^{3 m+6}+a \mathrm{~A}^{2} z^{2 m+6} * \begin{array}{r}* 8 c . \\ *-27 a^{9}\end{array}\right\}=0$. The firft cafe of external Terms will give $8 A^{3} z^{3^{m}+6}-27 a^{9}=0$, whence $3 m+6=0$, or $m=-2$. Thefe Indices or Numbers therefore will be each 0 ; and the other $2 m+6$ will be 2. But 0,2 , will be in an afcending Arithmetical Progreffion, of which the common difference is 2. So that the form of the Series will be $y=A z^{-}$ $+\mathrm{B}+\mathrm{C}_{2}+\mathrm{D} z^{4}, \& \mathrm{c}$. And bccaufe $8 \mathrm{~A}^{3}=27 a^{9}$, or $2 \mathrm{~A}=3 a^{3}$, it will be $A=\frac{3}{2} a^{3}$. Therefore the firf Term or Approximation to the Root will be $\frac{3 a^{3}}{2 \pi^{2}}$.

But another cafe of external Terms will give $a \mathrm{~A}^{2} z^{2 m+6}-27 a^{9}$ $=0$, whence $2 m+6=0$, or $m=-3$. Thefe Indices or Numbers therefore will be each \circ; and the other $3 m+6$ will be -3 . But $0,-3$, will be found in a defcending Arithmetical P:ogreffion, whofe common difference is 3 . So that the form of the Series will be $y=\mathrm{A} z^{-3}+\mathrm{B} z^{-6}+\mathrm{C} z^{-9}$, δc. And becaufe $a \mathrm{~A}^{2}=27 a^{9}$, 'tis $A= \pm 3 \sqrt{3} \times a^{4}$, for the firt Coefficient.

Laftly, there is another cafe of external Terms, which may poffi-bly afford us a defcending Series, by making $8 A^{3} z^{3 m+6}+a A^{2} z^{3 m+6}$ $=0$; whence $m=0$. And the Numbers will be each equal to 6 ; the other Number, or Index of z, is 0 . But 6,0 , will be in a defcending Arithmetical Progreffion, of which the common difference is 6 . Therefore the form of the Series will be $y=A+B z^{-6}+$ $\mathrm{C} \tilde{\sim}^{-22}$, \&c. Alio becaufe $8 \mathrm{~A}^{3}+a \mathrm{~A}^{2}=0$, it is $\hat{A}=-\frac{1}{8} a$ for the firt Coefficient.

I hall produce one Example more, in order to fhew what variety of Series may be derived fiom the Root in fome Equations; as alfo to thew all the cafes, and all the varieties that can be deived, in the prefent ftate of the Equation. Let us therefore affume this Equation, $y^{5}-\frac{1^{2} x^{2}}{a}+x^{3}-\frac{a^{3} x^{2}}{2}+\frac{a^{6}}{y^{3}}-\frac{a^{7}}{1^{2} \lambda^{2}}+\frac{\alpha^{6}}{x^{3}}-\frac{a^{3} y^{2}}{x^{2}}+a^{3}=0$, or rather $y^{3}-a^{-1} y^{2} x^{2}+x^{3}-a^{3} y^{-2} x^{2}+a^{6} y^{-3}-a^{7} y^{-2} x^{-2}+a^{6} x^{-3}$ $-a^{3} y^{2} x^{-2}+a^{3}=0$. Which if we make $y=$ A. \imath^{m}, \&xc. and difpofe
difpofe the Terms according to a combined Arithmetical Progreffion, will appear thus :

Now here it is plain by the difpofition of the Terms, that the Ruler can be apply'd eight times, and no oftner, or that there are eight cafes of external Terms to be try'd, each of which may give a Series for the Root, if the Coefficients will allow it, of which four will be afcending, and four defcending. And firf for the four cafes of afcending Series, in which the Root will converge by the afcending Powers of x; and afterwards for the other four cafes, when the Series converges by the defcending Powers of x.
I. Apply the Ruler, or, (which is the fame thing,) affume the Equation $a^{6} A^{-3} x^{-3 m}-a^{7} A^{-2} x^{-2 m-2}=0$, which will give -3^{m} $=-2 m-2$, or $m=2$; alfo $A=\frac{1}{a}$. The Number refulting from there Indices is -6 . But the Puler in its parallel motion will next come to the Index -3 ; then to $-2 m-2$, or -2 ; then to 0 ; then to $2 m-2$, or 2 ; then to 3 ; and laftly to $3 m$ and $2 m+2$, or 6. But the Numbers - $6,-3,-2,0,2,3,6$, are in an afcending Arithmetical Progreflion, of which the common difference is 1 ; and therefore the form of the Series will be $y=\mathrm{A} x^{2}+\mathrm{B} x^{3}$ $+\mathrm{C}^{4}, \& \mathrm{sc}$. and its firft Term will be $\frac{x^{2}}{a}$.
II. Affune the Equation $a^{6} x^{-3}-a^{7} \mathrm{~A}^{-2} x^{-2 m-2}=0$, which will give $-3=-2 m-2$, or $m=\frac{1}{2}$; alfo $A= \pm a^{\frac{2}{2}}$. The Number refulting hence is - 3 ; the next will be - $3 n$, or $-1 \frac{1}{2}$; the next $2 m-2$, or -1 ; the next 0 ; the next $-2 m+2$, or 1 ; the next $3 m$, or $1 \frac{1}{2}$; the two laft $2 m+2$ and 3 , are each 3 . But the Numbers - $3,-1 \frac{1}{2},-1,0,1,1 \frac{1}{2}, 3$, will be found in an afcending Arithmetical Progreffion, of which the common difference is $\frac{1}{2}$; and therefore the form of the Series will be $y=A x^{\frac{1}{2}}+B x+$ $\mathrm{C} \mathrm{x}^{\frac{3}{2}}+\mathrm{D} x^{2}, \& \mathrm{c}$. and its firf Term will be $\pm \sqrt{ } a x$.
III. Affume the Equation $a^{6} x^{-3}-a^{3} A^{2} x^{2 m-2}=0$, which will give $-3=2 m-2$, or $m=-\frac{1}{2}$; alfo $\mathrm{A}= \pm a^{\frac{3}{2}}$. The Number refulting is - 3 ; the next $3 m$, or $-1 \frac{1}{2}$; the next $-2 m-2$, or - I; the next 0 ; the next $2 m+2$, or I ; the next $-3 m$, or $1 \frac{1}{2}$; the two laft 3 and $-2 m+2$, which are each 3 . But the Numbers - $3,-1 \frac{1}{2},-1,0,1,1 \frac{1}{2}, 3$, will be all comprehended in an afcending Arithmetical Progreffion, of which the common difference is $\frac{x}{2}$; and therefore the form of the Series will be $y=\mathrm{A} x^{-\frac{1}{2}}$ $+\mathrm{B}+\mathrm{C} x^{\frac{1}{2}}+\mathrm{D} x$, \&uc. and the firft Term will be $\pm a^{\frac{3}{2}} x^{-\frac{1}{2}}$, or $\pm a \sqrt{\frac{a}{x}}$.
IV. Affume the Equation $A^{3} x^{3 m}-a^{3} A^{2} x^{a n n-2}=0$, which will
 refulting is -6 ; the next will be -3 ; the next $2 m+2$, or -2 ; the next 0 ; the next $-2 m-2$, or 2 ; the next 3 ; the two laft - $3 m$ and $-2 m+2$, each of which is 6 . But the Numbers - 6, $-3,-2,0,2,3,6$, belong to an afcending Arithmetical Progreffion, of which the common difference is 1 . Therefore the form of the Series will be $y=\mathrm{A} x^{-2}+\mathrm{B} x^{-1}+\mathrm{C}+\mathrm{D} x, \& \mathrm{c}$. and its firf Term will be $\frac{a^{3}}{x^{2}}$.

The four defcending Series are thus derived.
I. Affume the Equation $A^{3} x^{3 m}-a^{-1} A^{2} x^{2 m+2}=0$, which will give $3 m=2 m+2$, or $m=2$; alfo $A=\frac{1}{a}$. The Number refulting is 6 ; the next will be 3 ; the next $2 m-2$, or 2 ; the next 0 ; the next $-2 m+2$, or -2 ; the next -3 ; the two laft -3^{m} and - $2 m-2$, each of which is -6. But the Numbers $6,3,2,0,-2,-3,-6$, belong to a defcending Arithmetical Progreflion, of which the common difference is 1 . Therefore the form of the Series will be $y=\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}+\mathrm{D} x^{-5}, \& \mathrm{c}$. and the firft Term will be $\frac{x^{2}}{a}$.
II. Affume the Equation $x^{5}-a^{-1} A^{2} x^{2 m+2}=0$, which will give $2 m+2=3$, or $m=\frac{1}{2}$; alfo $A= \pm a^{\frac{1}{2}}$. The Number refulting is 3 ; the next will be $3 m$, or $I \frac{1}{2}$; the next $-2 m+2$, or I; the next 0 ; the next $=m-2$, or -1 ; the next $-3 m$, or $-1 \frac{x}{2}$; the two laft - 3 and $-2 m-2$ are each - 3. But the Numbers 3, $1 \frac{1}{2}, \mathrm{I}, \mathrm{O},-\mathrm{I},-\mathrm{I} \frac{1}{2},-3$, belong to a defcending Arithmetical Progrefion, of which the common difference is $\frac{t}{2}$. Therefore the form of the Series will be $y=A x^{\frac{1}{2}}+\mathrm{B} x^{0}+\mathrm{C} x^{-\frac{1}{2}}+\mathrm{D} x^{-1}, \& \mathrm{c}$. and the firf Term will be $\pm \sqrt{ }$ ax.
III. Affume the Equation $x^{3}-a^{3} \mathrm{~A}^{-2} x^{-2 m+2}=0$, which will give $3=-2 m+2$, or $m=-\frac{1}{2} ;$ alfo $A= \pm a^{2}$. The Number refulting from hence is 3 ; the next will be $-3 m$, or $\mathrm{I} \frac{1}{2}$; the next $2 m+2$, or 1 ; the next 0 ; the next $-2 m-2$, or - 1 ; the next $3 m$, or - $\frac{1}{2} ;$ ' the two laft - 3 and $2 m-2$, each of which are -3. But the Numbers 3, $1 \frac{1}{2}, 1,0,-1,-1 \frac{1}{2},-3$, are comprehended in a defcending Arithmetical Progreffion, of which the common difference is $\frac{-1}{2}$. Therefore the form of the Series will be $y=\mathrm{A} x^{-\frac{1}{2}}+\mathrm{B} x^{-1}+\mathrm{Cx}^{-\frac{3}{2}}+\mathrm{D} x^{-3}$, \&xc. and the firft Term will be $\pm a^{\frac{3}{2}} x^{-\frac{1}{2}}$, or $\pm a \sqrt{\frac{a}{x}}$.
IV. Laftly, affume the Equation $a^{6} \mathrm{~A}^{-3} x^{-3 m}-a^{3} \mathrm{~A}^{-2} x^{-2 m+:}=0$, which will give $-3 m=-2 m+2$, or $m=-2$; alro $A=a^{3}$ 。 The Number refulting is 6 ; the next will be 3 ; the next $-2 m-2$; or 2 ; the next 0 ; the next $2 m+2$, or -2 ; the next -3 ; the two next $3 m$ and $2 m-2$, are each -6. But the Numbers 6, 3 , $2,0,-2,-3,-6$ belong to a defcending Arithmetical Progreffion, of which the common difference is' r. " Therefore the form of the Series will be $y=\mathrm{A}^{-2}+\mathrm{B} x^{-3}+\mathrm{C} x^{-4}+\mathrm{D} x^{-5}, \& c$ and the firf Term is $\frac{a^{3}}{x^{2}}$.

And this may fuffice in all Equations of this kind, for finding the forms of the feveral Series, and their firft Approximations. Now we munt proceed to their farther Refolution; or to the Method of finding all the reft of the Terms fucceffively:

Sect:V:The Refolution of Affected Specious: Equations, projecuted by various Methods of Analyfs.

"ITHERTO it has been fhewn, when an Equation is propofed, in order to find its Root, how the Terms of the Equation are to be difpofed in;a two-fold regular fucceffion, fo as thereby to find the initial Approximations, and the feveral forms of the Series in all their various circumftances. Now the Author proceeds in like manner to difcover the fubfequent Terms of the Series, which may be done with much eafe and certainty; when the form of the Series is known. For this end he finds Refidual or Supplemental Equations, in a regular fucceffion alfo, the Roots of which are a continued Series of Supplements to the Root required. In every one of which Supplemental Equations the Approximation is E.e
found,
found, by rejecting the more remote or lefs confiderable Terms, and fo reducing it to a fimple Equation, which will give a near Value of the Root. And thus the whole affair is reduced to a kind of Comparifon of the Roots of Equations, as has been hinted already. The Root of an Equation is nearly found, and its Supplement, which. hould make it compleat, is the Root of an inferior Equation, the Supplement of which is again the Root of an inferior Equation; and fo on for ever. Or retaining that Supplement, we may ftop where we pleafe.
36. The Author's Diagram, or his Procefs of Refolution, is very. eafy to be underftood'; yet however it may be thus farther explain'd. Having inferted the Terms of the given Equation in the left-hand Column, (which therefore are equal to nothing, as are alfo all the fubfequent Columns, and having already found the firft Approximation to the Root to be a; inftead of the Root y he fubftitutes its equivalent $a+p$ in the feveral Terms of the Equation, and writes the Refult over-againft them refpectively, in the right-hand Margin. Thefe he collects and abbreviates, writing the Refult below, in the left-hand Column; of which rejecting all the Terms of too high a compofition, he retains only the two loweft Terms $4 a^{2} p+a^{2} x=0$, which give $p=-\frac{1}{4} x$ for the fecond Term of the Root. Then affuming $p=-\frac{1}{4} x+q$, he fubftitutes this in the defcending Terms to the left-hand, and writes the Refult in the Column to the righthand. Thefe he collects and abbreviates, writing the Refult below in the left-hand Column. Of which rejecting again all the higher Terms, he retains only the two loweft $4 a^{2} q-\frac{T^{2}}{5} a x^{2}=0$, which give $q=\frac{x^{2}}{64 a}$ for the third Term of the Root. And fo on.

Or in imitation of a former Procefs, (which may be feen, pag? 165.) the Refolution of this, and all. fuch like Equations, may be thus perform'd.

Or collecting and expunging;

$$
\begin{aligned}
& 4 a^{2} q+3 a q^{2}+q^{3}=\frac{1}{T^{6}} a x^{2}=\text { (if } q=\frac{x^{2}}{64!}+r \text {) \& } \mathrm{c} \text {. } \\
& -\frac{1}{2} a x q-\frac{3}{4} x q^{2} \quad+\frac{65}{6} x^{3} \\
& +\frac{3}{18} x^{2} q
\end{aligned}
$$

By which Procefs the Root will be found $y=a-\frac{1}{4} x+\frac{x^{2}}{6+4}$, \&c.

Or in imitation of the Method before taught, (pag. 178 , \&c.) we may thus refolve the firft Supplemental Equation of this Example ; viz. $4 a^{2} p+a x p+3 a p^{2}+p^{3}=-a^{2} x+x^{3}$; where the Terms muft be difpos'd in the following manner. But to avoid a great deal of unneceffary prolixity, it may be here obferved, that $y=a$, \&xc. briefly denotes, that a is the firft Term of the Series, to be derived for the Value of y. Alfo $y=*-\frac{1}{4} x$, \&c. infinuates, that $-\frac{1}{4} x$ is the fecond Term of the fame Series y. Alfo $y=* *+\frac{x^{2}}{64 a}$, \&c. infinuates, that $+\frac{x^{2}}{64 a}$ is the third Term of the Series y, without any regard to the other Terms. And fo for all the fucceeding Terms; and the like is to be underfood of all other Series whatever.

$$
\begin{aligned}
& p=-\frac{1}{4} x+\frac{x^{2}}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 \times 4}{163^{8} 4^{3}}, \delta x c .
\end{aligned}
$$

To explain this Procefs, it may be obferved, that here $-a^{2} x$ is made the firf Term of the Series, into. which $4 a^{2} p$ is to be refolved; or $4 a^{2} p=-a^{2} x, \& \mathrm{c}$. and therefore $p=-\frac{1}{4} x, \& \mathrm{c}$. which is fet down below. Then is $+a x p=-\frac{1}{4} a x^{2}, 8 c$. and (by fquaring) $+3 a p^{2}=+\frac{x^{3}}{5} a x^{2}, \& c$. each of which are fet down in their proper Places. Thefe Terms being collected, will make - $\frac{1}{1} \frac{12 x^{2}}{5}$, which with a contrary Sign muft be fet down for the fecond Term of $4 a^{2} p$; or $4 a^{2} p=*+\frac{1}{1} \sigma a x^{2}, \& c$. and therefore $p=*+\frac{x^{2}}{6+a}$, $\& c$. Then $a x p=*+\frac{x^{3}}{04}, \& c$. and (by fquaring) $3 a p^{2}=*-\frac{3 \times 8}{128}$, \&c. and (by cubing) $p^{3}=-\sigma^{\frac{1}{4}} x^{3}$, \&c. Thefe being collected will make - $\frac{3 x^{3}}{128}$, to be wrote down with a contrary Sign ; and this, together with x^{3}; one of the Terms of the given Equation; will make $4 a^{2} p=* *+\frac{131}{128^{3}} x^{3}, \& \mathrm{cc}$. and therefore $p=* *+\frac{1311^{3}}{512 n^{3}}$, $\& \mathrm{sc}$. Then $a x p=* *+\frac{131 \times 4}{512 a}, \& c$. and (by fquaring) $3 a p^{2}=* *$ Ee 2
$-\frac{1569 x 4}{4096 a}$, \&ec. and (by cubing) $p^{3}=*+\frac{3 . x 4}{1024 a}$; \&ic. all which being colleeted with a conttary Sign, will make $4 a^{2} p=* * *+$ $\frac{509 x 4}{409^{6 a}}$, \&c. and therefore $p=* * *+\frac{509 x^{4}}{163^{8} 4^{2}}$, \&c.: And by the fame Method we may continue the Extraction as far as we pleafe.

The Rationale of this Procers has been already deliver'd, but as it will be of frequent ufe, I thatl here mention it again, in fomewhat a different manner. The Terms of the Equation being duly order'd, fo as that the Terms involving the Root, (which are to be refolved into their refpective Séries,) being allin a Column on one fide, and the known Terms on the other fide; -any adventitious Terms may be introduced, fuch as will be neceffary for forming the feveral Series, provided they are made mutually to deftroy one another, that the integrity of the Equation may be thereby preferved. Thefe adventitious Terms will be fupply'd by a kind of Circulation, which will make the work eafy and pleafant enough; and the neceffary Terms of the fimple Powers or Roots, of fuch Series as compofe the Equation, muft be derived one by one, by any of the foregoing Theorems.

Or if we are willing to avoid too many; and tob high Powers in thefe Extractions, we may proceed in the following manner. The Example fhall be the fame Supplemental Equation as before, which may be reduced to this form, $4 a^{2}+a x+3 a p+p p \times p=$ $-a^{2} x *+x^{3}$, of which the Refolution may be thus:

$$
\begin{aligned}
& 4 a^{2}+a x \\
& +3 a p---\frac{3}{4} a x+\frac{3}{-4} x^{2}+\frac{30 x^{3}}{5 i 2 a}, 8 x c \\
& +p^{2} \cdots \cdots-\cdots+\frac{1}{1} x^{2}-\frac{x^{3}}{128 a} ; 8 x \\
& 4 a^{2}+\frac{x}{4} a x+\frac{7}{64} x^{2}+\frac{38,3 x^{3},}{52 a}, 8 c \\
& \frac{p=-\frac{x}{4} x+\frac{x^{2}}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{163^{8} 4^{3}}, 8 c \cdot}{-a^{2} x+x^{3}}
\end{aligned}
$$

The Terms $4 a^{2}+a x+3 a p+p p$ I call the aggregate Factor, of which I place the known part or parts $4 a^{2}+a x$ above, and the unknown parts $3 a p+p p$ in a Column to the left-hand, fo as that their refpective Series, as they come to be known, may be placed regularly over-againft them. Under thefe a Line is drawn, toreceive
the aggregate Series beneath it, which is form'd by the Terms of the aggregate Factor, as they become known. Under this aggregate Series comes the fimple Factor p, or the fymbol of the Root to be extracted, as its Terms become known alfo. Laftly, under all are the known Terms of the Equation in their proper places. Now as thefe laft Terms (becaufe of the Equation) are equivalent to the Product of the two Species above them; from this confideration the Terms of the Series p are gradually derived, as follows.

Firft, the initial ' 1 erm $4 a^{2}$ (of the aggregate Sëries) is brought down into its place, as having no other Term to be collected with it. Then becaufe this Term, multiply'd by the firft Term of p, fuppofe q, is. equal to the firft Term of the Product, that is, $4 \Omega^{2} q$ $=-n^{2} x$, it will be $q=-\frac{1}{4} x$, or $p=-\frac{1}{4} x$, \&c. to be put down in its place. Thence we chall have $3 a p=-\frac{3}{4} a x$, \&xc, which together with $+a x$ above, will make $+\frac{1}{4} a x$ for the fecond Term of the aggregate Series. Now if we fuppofe r to reprefent the fecond Term of p, and to be wrote in its place accordingly; by crofsmultiplication we fhall have $4 a^{2} r-\frac{1}{2} \sigma a x^{2}=0$, becaufe the fecond Term of the Product is abfent, or $=0$. Therefore $r=\frac{x^{2}}{6+a^{2}}$, which may now be fet down in its place. And hence $3 a p=*+\frac{3}{84} x^{2}$, \&c. and $p^{2}=\frac{1}{15} x^{2}$, \&c. which being collected will make $\frac{{ }^{7}}{4} x^{2}$, for the third Term of the aggregate Factor. Now if we fuppofe s to reprefent the third Term of p, then by crofs-multiplication, (or by our Theorem for Multiplication of infinite Series,) $4 a^{2 s}+$ $\frac{x^{3}}{25^{6}}-\frac{7 x^{3}}{25^{6}}=x^{3}$; (for x^{3} is the third Term of the Product.) Therefore $s=\frac{131 x^{3}}{512 a^{2}}$, to be fet down in its place. Then $3 a p=* *+$ $\frac{393 x^{3}}{5126}, 8 c \mathrm{c}$. and $p^{2}=*-\frac{x^{3}}{128 a}$, \&c. which together will make $+\frac{389 x^{3}}{512 a}$ for the fourth Term of the aggregate Series. Then putting t, to reprefent the fourth Term of p, by multiplication we flall have $4 a^{2} t+\frac{131 . x 4}{2048 a}+\frac{7 \times 4}{4096 a}-\frac{389 \times 4}{204^{8 a}}=0$, whence $t=\frac{509 \times 4}{163^{8}+a^{3}} ;$ to be fet down in its place. If we would proceed any farther in the Extraction, we inuft find in like manner the fourth Term of the $\mathrm{Se}-$ ries $3 a p$, and the third Term of p^{2}, in order to find the fifth Term of the aggregate Series. And thus we may eafily and furely carry on the Root to what degree of accuracy we pleafe, withcut any danger of computing any fuperfluous Terms; which will be no mean advantage of thefe Methods.

Or we may proceed in the following manner, by which we thall avoid the trouble of raifing any fubfidiary Powers at all. The Supplemental Equation of the fame Example, $4 a^{2} p+a x p+3 a p^{2}+$ $p^{3}=-a^{2} x+x^{3}$, (and all others in imitation of this,) may be reduced to this form, $4 a^{2}+a x+3 a+p \times p \times p=-a^{2} x+x^{3}$, which may be thus refolved.

$$
\begin{aligned}
& 4 a^{2}+a x \\
& +\overline{3^{a+p}}-\cdots+3 a-\frac{1}{4} x+\frac{x^{2}}{6^{a}}, \& \mathrm{c} . \\
& x p-\cdots-\frac{1}{4} x+\frac{x^{2}}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}, \& x c \text {. } \\
& \begin{array}{r}
4 a^{2}+\frac{1}{4} a x+\gamma^{4} x^{2}+\frac{3^{8} 9 x^{3}}{512 a}, \& \mathrm{c} . \\
\times p=-\frac{1}{4} x+\frac{x^{2}}{64^{a}}+\frac{131 x^{3}}{51 a^{2}}+\frac{509 x^{4}}{163^{8} 4^{33}}, \& \mathrm{c} . \\
-a^{2} x+x^{3}
\end{array}
\end{aligned}
$$

The Terms being difpofed as in this Paradigm, bring down $4 a^{2}$ for the firft Term of the aggregate Series, as it may ftill be call'd, and fuppofe q to reprefent the firft Term of the Series p. Then will $4 a^{2} q=-a^{2} x$, or $q=-\frac{1}{4} x$, which is to be wrote every where for the firft Term of p. Multiply $+3 a$ by $-\frac{1}{4} x$ for the firft Term of $3 a+p \times p$, with which product $-\frac{3}{4} a x$ collect the Term above, or $+a x$; the Refult $\frac{1}{4} a x$ will be the fecond Term of the aggregate Series. Then let r reprefent the fecond Term of p, and we fhall have by Multiplication $4 a^{2} r-\frac{1}{\mathrm{x}} \sigma a x^{2}=0$, or $r=\frac{x^{2}}{64 a}$, to be wrote every where for the fecond Term of p. Then as above, by crofsmultiplication we fhall have $3 a \times \frac{x^{2}}{64^{a}}+\frac{1}{8} x^{2}=\sigma^{7} x^{2}$ for the third Term of the aggregate Series. Again, fuppofing s to reprefent the third Term of p, we fhall have by Multiplication, (fee the Theorem, for that purpofe, $4 a^{2} s+\frac{x^{3}}{256}-\frac{7^{3}}{256}=x^{3}$, that is, $s=\frac{131 x^{3}}{512 a^{2}}$, to be wrote every where for the third Term of p. And by the fame way of Multiplication the fourth Term of the aggregate Series will be found to be $\frac{389 \times 3}{512 a}$, which will make the fourth Term of p to be $\frac{509 x^{4}}{153^{8} 4^{3}}$. And fo on.

Among all this variety of Methods for thefe Extractions, we muft not omit to fupply the Learner with one more, which is com*:
mon and obvious enough, but which fuppofes the form of the Se ries required to be already known, and only the Coefficients to be unknown. This we may the better do here, becaufe we have already fhewn how to determine the form and number of fuch $\mathrm{Se}-$ ries, in any cafe propofed. This Method confifts in the affumption of a general Series for the Root, fuch as may conveniently reprefent it, by the fubftitution of which in the given Equation, the general Coefficients may be determined. Thus in the prefent Equation $y^{3}+a x y+a a y-x^{3}-2 a^{3}=0$, having already found (pag. 204.) the form of the Root or Series to be $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}$, \&c. by the help of any of the Methods for Cubing an infinite Series, we may eafily fubititute this Series inftead of y in this Equation, which will then become

Now becaufe x is an indeterminate quantity, and muft continue fo to be, every Term of this Equation may be feparately put equal tonothing, by which the general Coefficients A, B, C, D, \&c. will be determined to congruous Values; and by this means the Root y will be known. Thus, (I.) $\mathrm{A}^{3}+a^{2} \mathrm{~A}-2 a^{3}=0$, which will give $\mathrm{A}=a_{\mathrm{y}}$: as before. (2.) $3 \mathrm{~A}^{2} \mathrm{~B}+a \mathrm{~A}+a^{2} \mathrm{~B}=0$, or $\mathrm{B}=\frac{-a \mathrm{~A}}{3 \mathrm{~A}^{2}+a^{2}}=-\frac{1}{4}$. (3.) $3 \mathrm{AB}^{2}+3 \mathrm{~A}^{2} \mathrm{C}+a \mathrm{~B}+a^{2} \mathrm{C}=0$, or $\mathrm{C}=-\frac{3 \mathrm{AB}^{2}+a \mathrm{~B}}{3 \mathrm{~A}^{2}+a^{2}}=\frac{1}{64 a}$. (4.) $\mathrm{B}^{3}+6 \mathrm{ABC}+3 \mathrm{~A}^{2} \mathrm{D}+a \mathrm{C}+a^{2} \mathrm{D}-1=0$; or $\mathrm{D}=\frac{131}{512 a^{2}}$. (5.) $3 \mathrm{AC}^{2}+3^{\mathrm{B}^{2} \mathrm{C}}+6 \mathrm{ABD}+3 \mathrm{~A}^{2} \mathrm{E}+a \mathrm{D}+a^{2} \mathrm{E}=0$, or $\mathrm{E}=$. $\frac{509}{163^{8} 4^{33}}$. And fo on, to determine $F, G, H, \& c$. Then by fubftituting thefe Values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}$. in the affumed Root, we thall have the former Series $y=a-\frac{1}{4} x+\frac{x^{2}}{6+a}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{165^{8} a^{3}}, \& \mathrm{cc}$.

Or laftly, we may conveniently enough refolve this Equation, or any other of the fane kind, by applying it to the general Theorem, pag. 190. for extracting the Roots of any affected Equations in Numbers. For this Equation being reduced to this form $y^{3} *+\overline{a^{2}+a x}$
$x y-\overline{2 a^{3}+x^{3}} \times y^{0}=0$, we fhall have there $m=3$. And inftead of the firft, fecond, third, fourth, fifth,' \&c. Coefficients of the Powers of y in the Theorem, if we write $1,0, a a+a x,-2 a^{3}-x^{3}, 0$, \&cc. refpectively; and if we make the firft Approximation $\frac{A}{B}=\frac{a}{1}$, or $A=a$ and $B=1$; we hall have $\frac{4^{3}+x^{3}}{4 a^{2}+a x}$ for a nearer Approximation to the Root. Again, if we make $A=4 a^{3}+x^{3}$, and $B=4 a^{2}+a x$, by Subftitution we fhall have the Fraction $\frac{256 a^{9}+96 a^{8} x+24 a^{7} x^{2}+114^{6} x^{3}+48 a^{5} x^{4}+12 a^{4} x^{3}+25 a^{3} x^{6} * *+2 x 9}{256 a^{8}+160 a^{7} x+60 a^{6} x^{2}+105 a^{5} x^{3}+25 a^{4 x} 4 *+12 a^{2} x^{6}+3 x^{2}}$ a nearer Approximation to the Root. And taking this Numerator for A, and the Denominator for B, we hall approach nearer ftill. But this laft Approximation is fo near, that if we only take the firft five Terms of the Numerator, and divide them by the firft five Terms of the Denominator, (which, if rightly managed, will be no troublefome Operation,) we fhall have the fame five Terms of the Series, fo often found already.

And the Theorem will converge fo faft on this, and fuch like occafions, that if we here take the firft Approximation $A=a$, (ma$\operatorname{king} \mathrm{B}=\mathrm{I}$,) we fhall have $y=\frac{4 a^{3}+x^{3}}{4^{2}+a x}, \& \mathrm{c} .=a-\frac{1}{4} x, \& \mathrm{cc}$. And if again we make this the fecond Approximation, or $\mathrm{A}=a$ $-\frac{1}{4} x$, (making $B=I$,) we fhall have $y=\frac{2 A^{3}+2 a^{3}+x^{3}}{3^{A^{3}+a^{2}+a x}}, 8 c .=$ $\frac{4 n^{3}-\frac{3}{3} a^{2} x+\frac{3}{3} a x^{2}+\frac{3}{3} \frac{1}{3} x^{3}}{44^{2}-\frac{1}{2} a x+\frac{3}{3} x^{2}}, \& c .=a-\frac{x}{4} x+\frac{x^{2}}{64 a}+\frac{131 x^{3}}{512 a^{2}}, \& x c$. And if again we make this the third Approximation, or $\mathrm{A}=a-\frac{2}{4} x+$ $\frac{x^{2}}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}$, \&xc. (making $\mathrm{B}=\mathrm{I}$,) we fhall have the Value of the true Root to eight Terms at this Operation. For every new Operation will double the number of Terms, that were found true by the laft Operation.

To proceed ftill with the fame Equation; we have found before, pag. 205, that we might likewife have a defcending Series in this form, $y=\mathrm{A} x+\mathrm{B}+\mathrm{C}^{-1}, \& c$. for the Root y, which we fhall extract two or three ways, for the more abundant exemplification of this Doctrine. It has been already found, that $\mathrm{A}=\mathrm{I}$, or that x is the firf Approximation to the Root. Make therefore $y=x+p$; and fubftitute this in the given Equation $y^{3}+a x y+a a y-x^{5}-$ $2 c^{3}=0$, which will then become $3 x^{2} p+a x^{2} p+a^{2} p+3 x p^{2}+p^{0}$ $+a x^{2}+a^{2} x-2 a^{3}=0$. This may be reduced to this form $3 x^{2}+a x+a^{2}+3 x p+p^{2} \times p=-a x^{2}-a^{2} x+2 a^{3}$, and may he refolved as follows.

The Terms of the aggregate Factor, as alfo the known Terms of the Equation, being difpofed as in the Paradigm, bring down $3 x^{2}$ for the firft Term of the aggregate Series; and fuppofing q to reprefent the firf Term of the Series p, it will be $3 x^{2} q=-a x^{2}$, or $q=-\frac{1}{3} a$, for the firft Term of p. Therefore - $a x$ will be the firft Term of $3 x p$, to be put down in its place. This will make the fecond Term of the aggregate Series to be nothing ; fo that if r reprefent the fecond Term of p, we hall have by multiplication $3 x^{2} r$. $=-a^{2} x$, or $r=-\frac{a^{2}}{3 x}$ for the fecond Term of p, to be put down in its place. Then will - a^{2} be the fecond Term of $3 x p$, as alfo $\frac{1}{9} a^{2}$ will be the firft Term of p^{2}, to be fet down each in their places. The Refult of this Column will be $\frac{x}{9} a^{2}$, which is to be made the third Term of the aggregate Series. Then putting s for the third
 or $s=\frac{55^{\prime 3}}{81 x^{2}}$. And thus by the next Operation we flall have $t=$ $\frac{6+0^{4}}{2+3 x^{2}}$, and fo on.

Or if we would refolve this refidual Equation by one of the foregoing Methods, by which the raifing of Powers was avoided, and wherein the whole was perform'd by Multiplication alone; we may reduce it to this form, $3 x^{2}+a x+a^{2}+3 x+p \times p \times p=-a x^{2}$ $-a^{2} x+2 a^{3}$, the Refolution of which will be thus:

$$
\mathrm{Ff}
$$

$$
\begin{array}{r}
3 x^{2}+a x+a^{2} \\
+\frac{a^{*}}{3 x+p---+3 x-\frac{a^{2}}{3} a-\frac{a^{2}}{3 x}, \& c .} \\
\times p-\cdots+\frac{a^{2}}{3 x}+\frac{55 a^{3}}{81 x^{2}}, \& x c . \\
3 x^{2}+\frac{1}{9} a^{2}+\frac{61 a^{3}}{27^{x}}, \& c . \\
\times p=-\frac{1}{3} a-\frac{a^{2}}{3 x}+\frac{5 a^{3}}{81 x^{2}}+\frac{64 a^{4}}{243^{x^{3}}}, \& \mathrm{c} . \\
-a x^{2}-a^{2} x+2 a^{3}
\end{array}
$$

The 'Terms being difpos'd as in the Example, bring down $3 x^{2}$ for the firft Term of the aggregate Series, and fuppofing q to reprefent the firft Term of the Series p, it will be $3 x^{2} q=-a x^{2}$, or $q=$ $\frac{1}{3}$ a. Put down $+3 x$ in its proper place, and under it (as alfo after it) put down the firft Term of p, or $-\frac{1}{3} a$, which being multiply'd, and collected with $+a x$ above, will make of for the fecond Term of the aggregate Series. If the fecond Term of p is now reprefented by r, we fhall have $3^{x^{2} r *}=-a^{2} x$, or $r=-\frac{a^{2}}{3^{x}}$, to be put down in its feveral places. Then by multiplying and collecting we fhall have $+\frac{1}{9} a^{2}$ for the third Term of the aggregate Series. And putting s for the third Term of p, we fhall have by Multiplication $3 x^{2} s-\frac{1}{2} \frac{1}{7} a^{3}=2 a^{3}$, or $s=\frac{55 a^{3}}{81 x^{2}}$. And fo on as far as we pleafe.

Laftly, inftead of the Supplemental Equation, we may refolve the given Equation itfelf in the following manner:

$$
\begin{aligned}
& \left.\begin{array}{r}
y^{3} \\
+a x y \\
+a^{2} y
\end{array}\right\} \begin{array}{c}
* \\
\quad-a x^{2}-\frac{2}{3} a^{2} x+\frac{2}{3} a^{3}-\frac{28 a^{3}}{81 x}
\end{array}, \& x . \\
& y=x-\frac{1}{3} a-\frac{a^{2}}{3 x}+\frac{55 a^{3}}{81 x^{2}}+\frac{64 a^{4}}{243^{3}}, 8 c \mathrm{c} .
\end{aligned}
$$

Here becaufe it is $y^{3}=x^{3}, \& c$. it will be $y=x, \& c$. and therefore $+a x y=+a x^{2}, \& c$. which muft be fet down in its place. Then it muft be wrote again with a contrary fign, that it may be $y^{3}=*$ - $a x^{2}, \& c$. and therefore (extracting the cube-root,) $y=*-\frac{1}{3} a$, $\& \mathrm{c}$. Then $+a^{2} y=+a^{2} x$, \&c. and $+a x y=*-\frac{1}{3} a^{2} x$, \& c .
which being collected with a contrary fign, will make $y^{5}=* *$ $\frac{2}{3} a^{2} x, \& x$. and (by Extraction) $y=* *-\frac{a^{2}}{3 x}, \& c$. Hence $+a^{2} y$ $=*-\frac{1}{3} a^{3}$, \&c. and $+a x y=* *-\frac{1}{3} a^{3}$, \&cc. which being collected with a contrary fign, and united with $+2 a^{3}$ above, will make $y^{5}=* * * \frac{8}{3} a^{3}, \& c$. whence (by Extraction) $y=* * * \frac{5 a^{3}}{51 x^{2}}$, \&c. Then $+a^{2} y=* *-\frac{64}{3 x}$, \&c. and $+a x y=* * *+\frac{55 a 4}{81 x}$, Scc. which being collected with a contrary fign, will make $y^{3}=$ ****- $\frac{28 a 4}{81 x}, 8 x c$. and then (by Extraction) $y=* * * *+\frac{61,4}{243^{3}}$, \&c. And fo on.

37,38 . I think I need not trouble the Learner, or myfelf, with giving any particular Explication (or Application) of the Author's Rules, for continuing the Quote only to fuch a certain period as flall be before determined, and for preventing the computation of fuperfuous Terms; becaufe moft of the Methods of Analyfis here deliver'd require no Rules at all, nor is there the leaft danger of making any unneceffary Computations.
39. When we are to find the Root y of fuch an Equation as this, $y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+\frac{1}{5} y^{5}, \& c \mathrm{c}=z$, this is ufually call'd the Reverfion of a Series. For as here the Aggregate z is exprefs'd by the Powers of y; fo when the Series is reverted, the Aggregate y will be exprefs'd by the Powers of z. This Equation, as now it ftands, fuppofes \boldsymbol{z} (or the Aggregate of the Series) to be unknown, and that we are to approximate to it indefinitely, by means of the known Number y and its Powers. Or otherwife; the unknown Number z is equivalent to an infinite Series of decreafing Terms, exprefs'd by an Arithmetical Scale, of which the known Number y is the Root. This Root therefore muft be fuppofed to be lefs than Unity, that the Series may duly converge. And thence it will follow, that \approx alfo will be much lefs than Unity. This is ufually called a Logarithmick Series, becaufe in certain circumftances it exprefles the Relation between the Logarithms and their Numbers, as will appear hereafter. If we look upon \mathcal{z} as known, and therefore y as unknown, the Series muit be reverted; or the Value of y muft be exprefs'd by a Series of Terms compos'd of the known Number z and its Powers. The Author's Method for reverting this Series will be very obvious from the confideration of his Diagram; and we fhall meet with another Method hereafter, in another part of his Works. It will be fufficient therefore in this place, to perform it after the manner of fome of the foregoing Extractions.

In this Paradign the unknown parts of the Equation are fet down in a defcending order to the left-hand, and the known Number \approx is fet down over-againft y to the right-hand. 'Then is $y=z, \& c$. and therefore $-\frac{1}{2} y^{2}=-\frac{1}{2} z^{2}$, \&cc. which is to be fet down in its place, and alfo with a contrary fign, fo that $y=*+\frac{1}{2} z^{2}$, \&cc. And therefore (fquaring) $-\frac{1}{2} y^{2}=*-\frac{1}{2} z^{3}, \& c$. and (cubing) $\left.+\frac{1}{3}\right)^{3}=+\frac{1}{3} z^{3}$, \&c. which Terms collected with a contrary fign, make $y=* *+\frac{1}{6} z^{3}, \& c$. And therefore (fquaring) $-\frac{x}{2} y^{2}=$ ** $-\frac{7}{2} \frac{7}{4} z^{4}$, \&cc. and (cubing) $+\frac{1}{3} y^{3}=*+\frac{1}{2} z^{4}$, \&cc. and $-\frac{1}{4} y^{4}$ $=-\frac{1}{4} \approx^{4}, \& x$. which Terms collected with a contrary fign, make
 and $\left.+\frac{1}{3}\right)^{3}=* *+\frac{5}{T^{2}} z^{3}$, \&cc. and $-\frac{1}{4} y^{4}=*-\frac{1}{2} z^{5}$, \&cc. and $+\frac{1}{5} y^{5}=+\frac{1}{5} \approx^{5}, \& c c$. which Terms collected with a contrary fign, make $y=* * * *+T_{T} \frac{1}{2} z^{5}$, Exc. And fo of the reft.
40. Thus if we were to revert the Series $y+\frac{1}{6} y^{3}+\frac{3}{40} y^{5}+\frac{5}{1} \frac{5}{1} \frac{1}{2} y^{7}$ $+\frac{3}{1} \frac{5}{5} \frac{5}{2} y^{10}+\frac{6}{2} \frac{3}{8} \frac{1}{2} y^{11}, \& c c=z$, (where the Aggregate of the Series, or the unknown Number \approx, will reprefent the Arch of a Circle, whofe Radius is I , if its right Sine is reprefented by the known Number y, or if we were to find the value of y, confider'd as unknown, to be exprefsd by the Powers of $\not \approx$, now confider'd as known; we may proceed thus:

The Terms being difpofed as you fee here, we fhall have $y=\approx$, Suc. and therefore (cubing) $\frac{1}{6} y^{3}=\frac{1}{6} z^{3}, \& x$. which makes $y={ }^{*}$ $-\frac{1}{6} \approx^{3}$, \&cc. fo that (cubing) we fhall have $+\frac{1}{6} y^{3}=*-\frac{1}{T^{2}} \frac{1}{2} 2^{5}$, \&c. and alfo $\frac{3}{40} y^{5}=\frac{3}{40} z^{5}, \& c$. and collecting with a contrary fign,

 contrary fign, $y=* * *-{ }^{\frac{1}{\sigma} \mp \widetilde{Z}^{7}}$, Ac. And fo on.

If we fhould defire to perform this Extraction by another of the foregoing Methods, that is, by fuppoling the Equation to be reduced to this form $1+\frac{1}{6} y^{2}+\frac{3}{4} \frac{y^{4}}{1}+\frac{5}{1} \frac{5}{12} y^{6}+T^{\frac{3}{1} \frac{5}{3} \sqrt{2} y^{8}}$, \&c. $x y=\approx$, it may be fufficient to fet down the Praxis, as here follows.

4r. The affected Cubick Equation, which the Author here aflumes to be folved, has infinite Series for the Coefficients of the Powers of y; and therefore its Terms being difpofed (as is taught before) according to a double Arithmetical Scale, the Roots of each of which are y and z, it will ftand as is reprefented here below. Or taking $\mathrm{A} z^{m}$ for the firf Approximation to the Root y, and fubftituting it in the firft Table, it will appear as is here fet down in the fecond Table.

Now the only cafe of external Terms, to be difcover'd by applying the Ruler, will give the Equation $\mathrm{A}^{3} \approx^{3^{m+1}}-8=0$, whence $3^{m+2}=0$, or $m=-\frac{2}{3}$, and the Coefficient $A=2$. The next Number or Index, to which the Ruler in its parallel motion will apply itfelf, will be $2 m+2$, or $\frac{2}{3}$; the next will be $m+2$, or $\frac{4}{3}$; and fo on. Which afcending Arithmetical Progreffion $0, \frac{2}{3}$, $\frac{4}{3}$, \&cc. will have $\frac{2}{3}$ for its common difference. Therefore $y=\mathrm{Az}^{-3}$ $+\mathrm{B}+\mathrm{C} z^{\frac{2}{3}}+\mathrm{D} z^{\frac{4}{3}}+\mathrm{E} z^{2}, \& c$. will be the form of the Root in this Equation. It may be refolved by any of the foregoing Methods, but
but perhaps moft readily by fubftituting the Value of y now found in the given Equation, and thence determining the general Coefficients as before. By which the Root will be found to be $y=$

42. To refolve this affected Quadratick Equation, in which one of the Coefficients is an infinite Series; if we fuppofe $y=\mathrm{A} x^{m}, \& c$. we fhall have (by Subftitution) the Equation as it ftands here below. Then by applying the Ruler, we hall have $-a \mathrm{~A}_{x^{m m}}+\frac{24}{44^{2}}=0$, whence $m=4$, and $A=\frac{1}{4 a^{3}}$. The next Index, that the Ruler in its parallel motion will arrive at, is $m+1$, or 5 ; the next is $m+2$, or 6 ; \&cc. fo that the common difference of the Progreffion is I , and the Root may be reprefented by $y=\mathrm{A} x^{4}+\mathrm{B} x^{5}+$ $\mathrm{C} x^{6}, \& \mathrm{c}$. which may be extracted as here follows.

$$
\begin{aligned}
& y=\frac{x^{4}}{4^{a^{3}}}-\frac{x^{5}}{4^{4}} * *+\frac{x^{8}}{16 a^{7}}, \delta \mathrm{c} .
\end{aligned}
$$

Here becaufe it is $-a y=-\frac{x 4}{4 a^{2}}$, \&rc. it will be $y=\frac{x^{4}}{4 a^{3}}, \& x c$. Therefore $-x y=-\frac{x^{5}}{4^{3}}, \& c$. which wrote with a contrary Sign will make $-a y=*+\frac{x^{5}}{4^{3}}$, and therefore $y=*-\frac{x^{5}}{4^{4}}$, \&cc. Then - $x y=*+\frac{x^{6}}{4^{4}}$, \&cc. and $-\frac{x^{2}}{a} y=-\frac{x^{6}}{4 a^{4}}, \delta<c$. which collected will deftroy each other, and therefore -ay $=* *+0$, $\& c$. and confequently $y=* *+0, \& c . \quad \& c$.

But there is another cafe of external Terms, which will be difcover'd by the Ruler, and which will give $\mathrm{A}^{2} x^{2 m}-a \mathrm{~A} x^{m}=0$, whence $m=0$, and $\mathrm{A}=a$. Here the Progreffion of the Indices will be $0, \mathrm{r}, 2, \& \mathrm{c}$. fo that $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}, \& \mathrm{c}$. will be the form of the Series. And if this Root be profecuted by any of the

Methods taught before, it will be found $y=a+x+\frac{x^{3}}{a}+\frac{x^{3}}{a^{2}}+$ $\frac{3 x^{4}}{4^{3}}, \& c$.

Now in the given Equation, becaufe the infinite Series $a+x+$ $\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{2}}, \& x$. is a Geometrical Progreffion, and therefore is equal to $\frac{a^{2}}{a-x}$, as may be proved by Divifion; if we fubftitute this, the Equation will become $y^{2}-\frac{a^{2}}{a-x} y+\frac{x^{4}}{4 a^{2}}=0$. And if we extract the fquare-root in the ordinary way, it will give $y=$ $\frac{a^{3} \pm \sqrt{a^{6}-a^{2} \times 4+2 a^{5}-x^{6}}}{2 a^{-}-2 a x}$ for the exact Root. And if this Radical be refolved, and then divided by this Denominator, the fame two Series will arife as before, for the two Roots of this Equation. And this fufficiently verifies the whole Procefs.
43. In Series that are very remarkable, and of general ufe, the Law of Continuation (if not obvious) fhould be always affign'd, when that can be conveniently done; which renders a Series fill more ufeful and elegant. This may commonly be difcover'd in the Computation, by attending to the formation of the Coefficients, efpecially if we put Letters to reprefent them, and thereby keep them as general as may be, defcending to particulars by degrees. In the Logarithmic Series, for inftance, $z=y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}$, \&c. the Law of Confecution is very obvious, fo that any Term, tho' ever fo remote, may eafily be affign'd at pleafure. For if we put ' T to reprefent any 'Term indefinitely, whofe order in the Series is exprefs'd by the natural Number m, then will $T= \pm \frac{1}{m} y^{m}$, where the Sign muft be + or -according as m is an odd or an even Number. So that the hundredth Term is $-\frac{1}{T 0}-y^{100}$, the next is $+\frac{1}{101} y^{101}, \& c$. In the Reverfe of this Series, or $y=z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{1}{2} \frac{1}{4} z^{4}+\frac{1}{2} \sigma^{2} z^{5}$, \&cc. the Law of Continuation is thus. Let T reprefent any Term indefinitely, whofe order in the Series is exprefs'd by m; then is $T=\frac{z^{m}}{1 \times 2 \times 3 \times 4 \times \sigma_{6} \text {. }}$, which Series in the Denominator muft be continued to as many Terms as there are Units in m. Or if c ftands for the Coefficient of the Term immediately preceding, then is $\mathrm{T}=$ $\frac{-}{m} z^{m}$.

Again, in the Series $y=z-\frac{1}{6} z^{3}+\frac{1}{1} \frac{1}{2} z^{4}-\frac{1}{5 \delta^{4} 0} z^{7}+$
 and its right Sine is expre(s'd,) the Law of Continuation will be thus.

If T be any Term of the Series, whofe order is exprefs'd by m, and if c be the Coefficient immediately before ; then $T=\frac{-c z^{2 m-1}}{2 m-1 \times \overline{2 m-2}}$. And in the Reverfe of this Series, or $\approx=y+\frac{1}{6} y^{3}+\frac{3}{40} y^{5}+\frac{5}{1} \frac{5}{2} y^{7}$ $+\mathbb{T}^{\frac{3}{1} \frac{3}{5}} y^{-1}$, \&c. the Law of Confecution will be thus. If T reprefents any Term, the Index of whofe place in the Series is m, and if c be the preceding Coefficient ; then $T=\frac{\overline{2 m-3} \times \overline{2 m-3} \times c}{2 m-1 \times 2 m-2}, 1^{2 m-x}$. And the like of others.

44, 45, 46. If we would perform thefe Extractions after a more indefinite and general manner, we may proceed thus. Let the given Equation be $y^{3}+a^{2} y+a x y-2 a^{3}-x^{3}=0$, the Terms of which fhould be difpofed as in the Margin. Suppofe $y=b+p$, where

$$
\left.\begin{array}{r}
-2 a^{3}+a^{2} y *+y^{3} \\
*+a x ; * \\
* \\
*
\end{array}\right\}=0 .
$$ b is to be conceived as a near Approximation to the Root y, and p as its fimall Supplement. When this is fubftituted, the Equation will ftand as it does here. Now becaufe x and p are both fmall quantities, the moft confiderable quantities are at the beginning of the Equation, from

 whicnce they proceed gradually diminifhing, both downwards and towards the right-hand; as ought always to be fuppos'd, when the Terms of an Equation are difpos'd according to a double Arithmetical Scale. And becaufe inftead of one unknown quantity f, we have here introduced two, b and p, we may determine one of them b, as the neceflity of the Refolution Shall require. To remove therefore the moft confiderable Quantities out of the Equation, and to leave only a Supplemental Equation, whofe Root is p; we may put $b^{3}+a^{2} b-2 a^{3}=0$, which Equation will determine b, and which therefore henceforward we are to look upon as known. And for brevity fake, if we put $a^{2}+3^{b_{2}^{2}}$ $=c$, we fhall have the Equation in the Margin.

Now here, becaufe the two initialTerms $\left.\begin{array}{l}\left.\text { +cp+abx are the moft confiderable of }+a i x+a x p+3^{b} p^{2}+1^{3}\right\} \\ \text { the Equation, which might be removed, if } \\ \text { for the firft Approximation to } p \text { we fhould }-x^{\frac{*}{3}}\end{array}\right\}=0$. affume - $\frac{a b x}{c}$, and the refulting Supplemental Equation would be deprefs'd lower ; therefore make $p=-\frac{a b x}{c}+q$, and by fubftitution we Ghall have this Equation following.

Here becaufe the Terms to be next removed are $+c q+d x^{2}$, we may $\left.\begin{array}{l}\text { put } q=-\frac{d}{c} x^{2}+r \text {, and by Sub- } \quad+c q+\frac{3 b q^{2}}{}+q^{3} \\ \text { ftitution we fhall have another } \quad+e x q-\frac{3 a b}{c} \cdot q^{2} \\ \text { Supplemental Equation, which } \\ \text { will be farther deprefs'd, and fo }+d x^{2}+\frac{3 a^{2} b^{2}}{c^{2}} x^{2} q \\ \text { on as far as we pleafe. Therefore }-f x^{3}\end{array}\right\}=0$.
ill be we fhall have the Root $y=b-\frac{1}{c} x-x^{2}, \& c$. where b will be
the Root of this Equation $b^{3}+a^{2} b-2 a^{3}=0, c=a^{2}+3 b^{2}$, $d=\frac{3 a^{2} b 3}{c^{2}}-\frac{a^{2} b}{c}, e=a-\frac{6 a b^{2}}{c}, f=\frac{a^{3} b 3}{c^{3}}+\mathrm{I}, \& c$.

Or by another Method of Solution, if in this Equation we affume (as before) $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}$, \&c. and fubftitute this in the Equation, to determine the general Coefficients, we fhall have $y=A-\frac{a A}{c^{2}} x+\frac{a+A}{c^{6}} x^{2}+\frac{c^{8}+7 a^{5} A^{5}-a^{7} A}{c^{50}} x^{3}, \& c$. wherein A is the Root of the Equation $\mathrm{A}^{3}+a^{2} \mathrm{~A}-2 a^{3}=0$, and $c^{2}=3 \mathrm{~A}^{2}+a^{2}$.
47. All Equations cannot be thus immediately refolved, or their Roots cannot always be exhibited by an Arithnetical Scale, whofe Root is one of the Quantities in the given Equation. But to perform the Analyfis it is fometimes required, that a new Symbol or Quantity fhould be introduced into the Equation, by the Powers of which the Root to be extracted may be exprefs'd in a converging Series. And the Relation between this new Symbol, and the Quantities of the Equation, muft be exhibited by another Equation. Thus if it were propofed to extract the Root y of this Equation, $x=a+y-\frac{1}{2} y^{2}+\frac{3}{3} y^{3}-\frac{1}{4} y^{4}$, \&c. it would be in vain to expect, that it might be exprefs'd by the fimple Powers of either x or a. For the Series itfelf fuppofes, in order to its converging, that y is fome fmall Number lefs than Unity; but x and a are under no fuch limitations. And therefore a Series, compofed of the afcending Powers of x, may be a diverging Series. It is therefore neceffary to introduce a new Symbol, which fhall alfo be fmall, that a Series

$$
G g
$$

form'd 4
form'd of its Powers may converge to y. Now it is plain, that x and a, tho ever fo great, muft always be near each other, becaufetheir difference $y-\frac{1}{2} y^{2}$, \&cc. is a fmall quantity. Affume therefore the Equation $x-a=z$, and z will be a finall quantity as required; and being introduced inftead of $x-a$, will give $z=y-\frac{1}{2} y^{2}+$ $\frac{2}{3} y^{3}-\frac{1}{4} y^{4}$, \&c. whofe Root being extracted will be $y=z+\frac{1}{2} z^{2}$ $+\frac{1}{6} z^{3}+\frac{1}{2} \frac{1}{4} z^{4}$, \&cc. as before.
48. Thus if we had the Equation $y^{3}+y^{2}+y-x^{3}=0$, to find the Root y; we might have a Series for y compofed of the afcending Powers of x, which would converge if x were a fmall quantity, lets than Unity, but would diverge in contrary Circumftances. Suppofing then that x was known to be a large Quantity; in this cafe the Author's Expedient is this. Making z the Reciprocal of x, or fuppofing the Equation $x=\frac{1}{z}$, inftead of x he introduces z into the Equation, by which means he obtains a converging Series, confifting of the Powers of z afcending in the Numerators, that is in reality, of the Powers of x afcending in the Denominators. This he does, to keep within the Cafe he propofed to himfelf; but in the Method here purfued, there is no occafion to have recourfe to this Expedient, it being an indifferent matter, whether the Powers of the converging quantity afcend in the Numerators or the Denominators.

Thus in the given Equation $\left.y^{3}+y^{2}+y-x^{* 3}\right\}=0$, or (making $y=A x^{m}$, \&c.) $\mathrm{A}^{3} x^{x^{m}}+\mathrm{A}^{2} x^{2 m}+A x^{m} \underset{-x^{3}}{*},\{c\}=$.0 , by applying the Ruler we fhall have the exterior Terms $A^{3} x^{3^{m}}-x^{3}$ $=0$, or $m=1$, and $A=1$. Alfo the refulting Number or Index is 3. The next Term to which the Ruler approaches will give 2 m , or 2 ; the laft m, or 1 . But $3,2,1$, make a defcending Progreffion, of which the common difference is I . Therefore the form of the Root will be $y=\mathrm{A} x+\mathrm{B}+\mathrm{C}^{-3}+\mathrm{D} x^{-2}$, \&c. which we may thus extract.

$$
\begin{aligned}
& \left.\begin{array}{r}
y^{3} \\
+y^{2}
\end{array}\right\}=x^{3}-x^{2}-\frac{x}{3} x+\frac{3}{3} x^{0}+\frac{7}{8} x^{-1}, \& \mathrm{xc} . \\
& +y S \ldots+\cdots+\frac{3}{3} x^{0}-\frac{2}{9} x^{-3}+\frac{7}{8} x^{-2}+\frac{5}{8} x^{-3}, \& c c .
\end{aligned}
$$

Becaufe $y^{3}=x^{3}, \& \mathrm{c}$. it will be $y=x, \& \mathrm{c}$. and therefore $y^{2}=x^{2}, \& x$. which will make $y^{3}=*-x^{2}, 8 c$. and (by Extraction) $y=*-\frac{x}{3}$, \&c. Then (by fquaring) $y^{2}=*-\frac{1}{3} x, \& x$. which with x below, and changing the Sign, makes $y^{3}=* *-\frac{1}{3} x, \& c$. and therefore
$y=* *-\frac{1}{9} x^{-1}$, \&ic. Then $y^{2}=* *-\frac{1}{3}, \& c c$. and $y=*-\frac{1}{3}$, \&xc. which together, changing the Sign, make $y^{3}=* * *+\frac{2}{3}$, \&c. and $y=* * *+\frac{7^{3}}{5} x^{-2}$, \&xc. Then $y^{2}=* * *+\frac{1}{8} \frac{1}{8} x^{-1}$, \&cc. and $y=* *-\frac{2}{9} x^{-1}, \& \mathrm{cc}$. and therefore $y^{3}=* * * *+\frac{7}{5^{7}} x^{-3}$, \&cc. and $y=* * * *+\frac{5}{8} x^{-3}, \& c c$.

Now as this Series is accommodated to the cafe of convergency when x is a large Quantity, fo we may derive another Series from hence, which will be accommodated to the cafe when x is a fmall quantity. For the Ruler will direct us to the external Terms Ax ${ }^{m}$ $-x^{3}=0$, whence $m=3$, and $\mathrm{A}=1$; and the refulting Number is 3 . The next Term will give $2 m$, or 6 ; and the latt is $3 m$, or 9. But 3,6,9 will form an afcending Progreffion, of which the common difference is 3 . Therefore $y=\mathrm{A} x^{5}+\mathrm{B} x^{6}+\mathrm{C} x^{9}$, \&c. will be the form of the Series in this cafe, which may be thus derived.

Here becaufe $y=x^{3}$, \&c. it will be $y^{2}=x^{6}, \& c$. and therefore $y=*-x^{6}$, \&xc. Then $y^{2}=*-2 x^{9}$, \&xc. and $y^{3}=x^{9} ;$ \&c. and therefore $y=* *+x^{9}, \& \mathrm{c}$. Then $y^{2}=* *+3 x^{12}, \& \mathrm{c}$. and $y^{3}=*-3 x^{12}$, \&c. and therefore $y=* * *+0,8 c$.

The Expedient of the Ruler will indicate a third cafe of external Terms, which may be try'd alfo. For we may put $A^{3} x^{\prime 3 m}+A^{2} x^{-m}$ $+\mathrm{A} x^{m}=0$, whence $m=0$, and the Number refulting from the other Term is 3 . Therefore 3 will be the common difference of the Progreffion, and the form of the Root will be $y=\mathrm{A}+\mathrm{B} x^{3}+$ $C x^{6}$, \&c. But the Equation $A^{3}+A^{2}+A=0$, will give $A=0$, which will reduce this to the former Series. And the other two Roots of the Equation will be impofiible.

If the Equation of this Example $y^{3}+y^{2}+y-x^{3}=0$ be multiply'd by the factor $y-1$, we fhall have the Equation $y^{4}-y$ $-x^{3} y+x^{3}=0$, or $\left.y^{*} * *-y-x^{*} y+x^{3}\right\}=0$, which when reefolved, will only afford the fame Series for the Root y as before.
49. This Equation $y^{4}-x^{2} y^{2}+x y^{2}+2 y^{2}-2 y+1=0$, when reduced to the form of a double Arithmetical Scale, will ftand as in the Margin.

Now the firt Cafe of extermal Terms, hewn by the Ruler, in order for an afcending Series, will make $\mathrm{A}^{4} x^{4^{m}}+2 \mathrm{~A}^{2} x^{2 m}-2 \mathrm{~A} x^{m}$ $+\mathrm{I}=0$, or $m=0$; where the refulting Number is alfo o. The fecond is $2 m+\mathrm{I}$, or I ; the third $2 m+2$, or 2. Therefore the Arithmetical Progreffion will be 0 , 1,2 , whofe common difference is 1 ; and confequently it will be $y=\mathrm{A}+\mathrm{B} x+\mathrm{C}^{2}+\mathrm{D} x^{3}, \& \mathrm{c}$. But the Equation $\mathrm{A}^{4}+2 \mathrm{~A}^{2}$ $-2 A+1=0$, which mould give the Value of the firf Coefficient, will fupply us with none but impoffible Roots; fo that y, the Root of this Equation, cannot be exprefs'd by an Arithmetical Scale whofe Root is x, or by an afcending Series that converges by the Powers of x, when x is a fmall quantity.

As for defcending Series, there are two cafes to be try'd; firft the Ruler will give us $\mathrm{A}^{4} x^{4^{m}}-\mathrm{A}^{2} x^{2 m+2}=0$, whence $4 m=2 m+2$, or $m=1$, and $A= \pm 1$. The Number arifing is 4 ; the next will be $2 m+1$, or 3 ; the next $2 m$, or 2 ; the next m, or 1 ; the laft 0 . But the Arithmetical Progreffion $4,3,2,1,0$, has 1 for its common difference, and therefore the form of the Series will be $y=\mathrm{A} x+$ $\mathrm{B}+\mathrm{C} x^{-1}$, \&xc. But to extract this Series by our ufual Method, it will be beft to reduce the Equation to this form, $y^{2}-x^{2}+x+2$ $-2 y^{-\mathrm{x}}+y^{-3}=0$, and then to proceed thus:

$$
\begin{aligned}
& y^{2},=x^{2}-x-2+2 x^{-1}-\frac{3}{2} x^{-3}, \&<c . \\
& \left.\begin{array}{l}
2 y^{-1} \\
+y^{-2}
\end{array}\right\} \ldots \ldots \ldots .2 x^{-1}+\frac{1}{2} x^{-2}, \& x c . \\
& y=x-\frac{x}{3}-\frac{9}{8 x}+\frac{7}{16 x^{2}}-\frac{177}{128 x^{3}}, \& c .
\end{aligned}
$$

Becaufe $y^{2}=x^{2}-x-2, \& \mathrm{c}$. 'tis therefore (by Extraction) $y=x-\frac{1}{2}-\frac{9}{8} x^{-1}, \& c$. Then (by Divifion) $-2 y^{-x}=-2 x^{-5}$, \&c. fo that $y^{2}=*^{*}++^{-1}$, \&cc. and (by Extraction) $y=*^{*} *$ $+\frac{7}{1} x^{-2}$, \&xc. Then $-2 y^{-1}=*+\frac{x}{2} x^{-2}, \& x$. and $y^{-2}=x^{-2}$, $\& \mathrm{c}$. which being united with a contrary fign, make $y^{2}=* * * *$ $-\frac{3}{2} x^{-2}$, \&xc. and therefore by Extraction $y=* * * *$ - $\frac{1}{1} \frac{7}{2} \frac{7}{8} x^{-3}$, \&c.

In the other cafe of a defcending Series we fhall have the Equation $-\mathrm{A}^{2} x^{3 m+2}+\mathrm{I}=0$, whence $2 m+2=0$, or $m=-\mathrm{I}$, and $\mathrm{A}= \pm 1$. The Number hence arifing is 0 ; the next will be $2 m+\mathrm{I}$,
or - I ; the next $2 m$, or - 2 ; and the laft $4 m$, or - 4 . But the Numbers $0,-1,-2,-4$, will be found in a defcending Arithmetical Progreffion, the common difference of which is I. Therefore the form of the Root is $y=\mathrm{A} x^{-3}+\mathrm{B} x^{-2}+\mathrm{C} x^{-3}, \& c$. and the Terms of the Equation muft be thus difpofed for Refolution.

$$
\begin{aligned}
& y=\frac{1}{x}-\frac{1}{2 x^{2}}+\frac{7}{8 x^{3}}-\frac{7}{16 x^{4}}+\frac{187}{128 x^{5}}, \& c .
\end{aligned}
$$

Here becaufe it is $y^{-2}=x^{2}, \& x$. it will be by Extraction of the Square-root $y^{-1}=x, \& c$. and by finding the Reciprocal, $y=x^{-\mathrm{s}}$, $\& c$. Then becaufe $-2 y^{-5}=-2 x, \& c$. this with a contrary Sign, and collected with - x above, will make $y^{-2}=*+x, \& c$. which (by Extraction) makes $y^{-5}=*+\frac{1}{2}$, \&c. and by taking the Reciprocal, $y=*-\frac{s}{2} x^{-2}$, \&xc. Then becaufe $-2 y^{-1}=*-1$, \&c. this with a contrary fign, and collected with -2 above, will make $y^{-3}=* *-1, \& x c$. and therefore (by Extraction) $y^{-1}=* *-$ $\frac{5}{8} x^{-}, \& c c$. and (by Divifion) $y=* *+\frac{7}{8} x^{-3}, \&<c$. Then becaufe $-2 y^{-1}=* *+\frac{5}{4} x^{-1}$, it will be $y^{-2}=* * *-\frac{5}{4} x^{-1}$, \&c. and $y^{-1}=* * *-\frac{5}{8} x^{-1}, \& c \mathrm{c}$. and $y=* * *-\frac{7}{16} x^{-3}, \& c$. Then becaufe $-2^{y^{-\mathrm{s}}}=*^{* *}+\frac{5}{8} x^{-2}$, \& cc. and $y^{2}=x^{-2}$, \&c. thefe collected with a contrary fign will make $y^{-2}=* * * *-\frac{13}{8} x^{-2}$, \&cc. and $y^{-1}=* * * *-\frac{5}{16} x^{-2}, \& c$. and $y=* * * *+\frac{1}{1} \frac{8}{2} \frac{7}{8} x^{-4}$, $\& c$.

Thefe are the two defcending Series, which may be derived for the Root of this Equation, and which will converge by the Powers of x, when it is a large quantity. But if x fhould happen to be fmall, then in order to obtain a converging Series, we much change the Root of the Scale. As if it were known that x differs but little from 2, we may conveniently put z for that fmall difference, or we my affume the Equation $x-2=z$. That is, inftead of \boldsymbol{x} in this Equation fubftitute $z+2$, and we fhall have a new Equation $y^{4}-z^{2} y^{2}-3 z y^{2}-2 y+I=0$, which will appear as in the Margin.

Here to have an afcending Series, we muft put $\mathrm{A}+2^{4 m}-2 \mathrm{~A} . \mathrm{w}^{m}$ $+1=0$, whence $m=0$, and $\mathrm{A}=\mathrm{I}$. The Number hence arifing is 0 ; the next is $2 m+1$, or 1 ; and the laft $2 m+2$, or 2 . But $0,1,2$, are in an afcending

Or miking $y=A z^{m}$, छ゙ . Progreffion, whofe common difference is i. Therefore the form of the Series is $y=A+B z+C z^{2}+\mathrm{D}_{z^{3}}$, \&cc. And if the Root y be extracted by any of the foregoing Methods, it will be found $y=$ $I+\frac{3}{2} z-\frac{7}{4} z^{2}$, \&xc. Alfo we may hence find two defcending Series, which would converge by the Root of the Scale \approx, if it were a large quantity.

50, 51. Our Author has here opened a large field for the Solution of thefe Equations, by fhewing, that the indeterminate quantity, or what we call the Root of the Scale, or the converging quantity, may be changed a great variety of ways, and thence new Series will be derived for the Root of the Equation, which in different circumftances will converge differently, fo that the moft commodious for the prefent occafion may always be chofe. And when one Series does not fufficiently converge, we may be able to change it for another that fhall converge fafter. But that we may not be left to uncertain interpretations of the indeterminate quantity, or be obliged to make Suppofitions at random; he gives us this Rule for finding initial Approximations, that may come at once pretty near the Root required, and therefore the Series will converge apace to it. Which Rule amounts to this: We are to find what quantities, when fubftituted for the indefinite Species in the propofed Equation, will make it divifible by the radical Species, increafed or diminifhed by another quantity, or by the radical Species alone. The fmall difference that will be found between any one of thofe quantities, and the indeterminate quantity of the Equation, may be introduced inftead of that indeterminate quantity, as a convenient Root of the Scale, by which the Series is to converge.

Thus is the Equation propofed be $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}$ $=0$, and if for x we here fubftitute a, we fhall have the Terms $y^{3}+2 a^{2} y-3 a^{5}$, which are divifible by $y-a$, the Quotient being $y^{2}+a y+3 a^{2}$. Therefore we may fuppofe, by the foregoing Rule, that $a-x=z$ is but a fmall quantity, or inftead of x we may fubftitute $a-z$ in the propofed Equation, which will then become $y^{3}+2 a^{2} y-a z y+3 a^{2} z-3 a z^{2}+z^{3}-2 a^{3}=0$. A Series

Series derived from hence, compofed of the afcending Powers of z, muft converge faft, cateris paribus, becaufe the Root of the Scale \approx is a fmall quantity.

Or in the fame Equation, if for x we fubfitute $-a$, we flall have the Terms $y^{3}-a^{3}$, which are divifible by $y-a$, the Quotient being $y^{2}+a y+a^{2}$. Therefore we may fuppofe the difference between - a and x to be but little, or that -a-x=z is a fimall quantity, and therefore inftead of x we may fubftitute its. equal - $a-z$ in the given Equation. This will then become $y^{3}-a z y+3 a^{2} z+3 a z^{2}-a^{3}=0$, where the Root y will converge by the Powers of the finall quantity z.

Or if for x we fubftitute - $2 a$, we thall have the Terms y^{3} $a^{2} y+6 a^{3}$, which are divifible by $y+2 a$, the Quotient being y^{2} $-2 a y+3 a^{2}$. Wherefore we may fuppofe there is but a fmall difference between $-2 a$ and x, or that - $2 a-x=z$ is a fmall quantity; and therefore inflead of x we may introduce its equal $-2 a-z$ into the Equation, which will then become $y^{3}-a^{2} y-$ $a z y+6 a^{3}+12 a^{2} z+6 a z^{2}+z^{3}=0$.

Laftly, if for x we fubftitute $-2^{\frac{5}{s}} a$, we fhall have the Terms $y^{3}-2^{\frac{1}{3}} a^{2} y+a^{2} y$, which are divifible by y, the Radical Species alone. Wherefore we may fuppofe there is but a fmall difference between $-2^{\frac{1}{3}} a$ and x, or that $-2^{\frac{7}{3}} a-x=z$ is a fmall quantity; and therefore inftead of x we may fubftitute its equal $-2^{\frac{1}{3}} a-z$, which will reduce the Equation to $y^{3}+1-\sqrt[3]{2} \times a^{2} y-a z y+3 \sqrt{3}^{3} \times a^{2} z$ $+3 \sqrt[3]{2} \times a z^{2}+z^{3}=0$, wherein the Series for the Root y may converge by the Powers of the fmall quantity z.

But the reafon of this Operation ftill remains to be inquired into, which I fhall endeavour to explain from the prefent Example. In the Equation $y^{3}-1-a x y+a^{2} y-x^{3}-2 a^{3}=0$, the indeterminate quantity x, of its own nature, muft be fufceptible of all poffible Values; at leaft, if it had any limitations, they would be fhew'd by impofirble Roots. Among other values, it will receive thefe, $a,-a$, $-2 a,-2^{\frac{1}{3}} a$, \&cc. in which cafes the Equation would become y^{3} $+2 a^{2} y-3 a^{3}=0, y^{3}-a^{3}=0, y^{3}-a^{2} y+6 a^{3}=0, y^{3}-$ $2^{\frac{1}{3}} a^{2} y+a^{2} y=0, \& c$. refpectively. Now as thefe Equations admit of jult Roots, as appears by their being divifible by $y+$ or -another quantity, and the laft by y alone; fo that in the Refolution, the whole Equation (in thofe cafes). would be immediately exhaufted: And in other cares, when x does not much recede from one of thore Values,

Values, the Equation would be nearly exhaufted. Therefore the introducing of z, which is the fmall difference between x and any one of thofe Values, muft deprefs the Equation; and \approx itfelf muft be a convenient quantity to be made the Root of the Scale, or the converging Quantity.

I hall give the Solution of one of the Equations of thefe Examples, which fhall be this, $y^{3}-a z y+3 a^{2} z+3 a z^{2}-a^{3}=0$, or

$$
\begin{aligned}
& y=a-\frac{3}{3} z-\frac{5 z^{2}}{3^{a}}-\frac{21 ; z^{3}}{81 a^{2}}, \delta c .
\end{aligned}
$$

Here becaufe $y^{s}=a^{3}, \& c$. it will be $y=a, \& c$. Then - $a z y$ $=-a^{2} z, \& c$. which muft be wrote again with a contrary fign, and united with - $3 a^{2} z$ above, to make $y^{3}=*-2 a^{2} z$, \&cc. and therefore $y=*-\frac{2}{3} r$, \&cc. Then $-a z y=*+\frac{2}{3} a z^{2}, \& c$. and $y^{5}=* *-\frac{1}{3} a z^{2}$, \&cc. and $y=* *-\frac{5 z^{2}}{3 a}, \& c$. Then - $a z y$ $=* *+\frac{5}{3} z^{3}, \& \mathrm{c}$. and $y^{3}=* * *-\frac{5}{3} z^{3}, \& \mathrm{c}$. and $y=* * *$ $\frac{217 z^{3}}{81 a^{2}}, \& c$.

The Author hints at many other ways of deriving a variety of Series from the fame Equation ; as when we fuppofe the afore-mention'd difference z to be indefinitely great, and from that Suppofition we find Series, in which the Powers of \approx fhall afcend in the Denominators. This Cafe we have all along purfued indifcriminately with the other Cafe, in which the Powers of the converging quantity afcend in the Numerators, and therefore we need add nothing here about it. Another Expedient is, to affume for the converging quantity fome other quantity of the Equation, which then may be confider'd as indeterminate. So here, for inftance, we may change a into x, and x into a. Or laftly, to affume any Relation at pleafure, (fuppofe $x=a z+b z^{2}, x=\frac{a}{b+z}, x=\frac{a+c z}{b+z}, \& z c$.) between the indeterminate quantity of the Equation x, and the quantity z we would introduce into its room, by which new equivalent Equations may be form'd, and then their Roots may be extracted. And afterwards the value of z may be exprefs'd by x, by means of the affumed Equation.
52. The Author here, in a fummary way, gives us a Rationale of his whole Method of Extractions, proving à priori, that the Series thus form'd, and continued in infinitum, will then be the juft Roots of the propofed Equation. And if they are only continued to a competent number of Terms, (the more the better,) yet then wiil they be a very near Approximation to the juf and compleat Roots. For, when an Equation is propofed to be refolved, as near an Approach is made to the Root, fuppofe y, as can be had in a lingle Term, compofed of the quantities given by the Equation; and becaufe there is a Remainder, a Refidual or Secondary Equation is thence form'd, whofe Root p is the Supplement to the Root of the given Equation, whatever that may be. Then as near an approach is made to p, as can be done by a fingle Term, and a new Refidual Equation is form'd from the Remainder, whercin the Root q is the Supplement to p. And by proceeding thus, the Refidual Equations are continually deprefs'd, and the Supplements grow perpetually lefs and lefs, till the Terms at laft are lefs than any affignable quantities. We may illuftrate this by a familiar Example, taken from the ufual Method of Divifion of Decimal Fractions. At every Operation we put as large a Figure in the Quotient, as the Dividend and Divifor will permit, fo as to leave the leaft Remainder poffible. Then this Remainder fupplies the place of a new Dividend, which we are to exhauft as far as can be done by one Figure, and therefore we put the greateft number we can for the next Figure of the Quotient, and thereby leave the leaft Remainder we can. And fo we go on, either till the whole Dividend is exhaufted, if that can be done, or till we have obtain'd a fufficient Approximation in decimal places or figures. And the fame way of Argumentation, that proves our Author's Method of Extraction, may eafily be apply'd to the other ways of Analyfis that are here found.

53,54. Here it is feafonably obferved, that tho' the indefinite Quantity fhould not be taken fo fmall, as to make the Series converge very faft, yet it would however converge to the true Root, tho' by more fteps and flower degrees. And this would obtain in proportion, even if it were taken never fo large, provided we do not exceed the due Limits of the Roots, which may be difcover'd, either from the given Equation, or from the Root when exhibited by a Series, or may be farther deduced and illuftrated by fome Geometrical Figure, to which the Equation is accommodated.

So if the given Equation were $y=a x-x x$, it is eafy to obferve, that neither y nor x can be infinite, but they are both liable to
feveral Limitations. For if x be fuppos'd infinite, the Term $a x$ would vanim in refpect of - $x x$, which would give the Value of $y y$ impofible on this Suppofition. Nor can x be negative; for then the Value of y y would be negative, and therefore the Value of y would again become impoffible. If $x=0$, then is $y=0$ alfo; which is one Limitation of both quantities. As $y y$ is the difference between $a x$ and $x x$, when that difference is greateft, then will $y y$, and confequently y, be greateft alfo. But this happens when $x=\frac{1}{2} a$, as alfo $y=\frac{1}{2} a$, as may appear from the following Prob. 3. And in general, when y is exprefs'd by any number of Terms, whether finite or infinite, it will then come to its Limit when the difference is greateft between the affirmative and negative Terms; as may appear from the fame Problem. This laft will be a Limitation for y, but not for x. Laftly, when $x=a$, then $y=0$; which will limit both x and y. For if we fuppofe x to be greater than a, the negative Term will prevail over the affirmative, and give the Value of $y y$ negative, which will make the Value of y impoffible. So that upon the whole, the Limitations of x in this Equation will be thefe, that it cannot be lefs than 0 , nor greater than a, but may be of any intermediate magnitude between thofe Limits.

Now if we refolve this Equation, and find the Value of y in an infinite Series, we may fill difcover the fame Limitations from thence. For from the Equation $y=a x-x x$, by extracting the fquare-root, as before, we mall have $y=a^{\frac{1}{2}} x^{\frac{1}{2}}-\frac{x^{\frac{3}{2}}}{2 a^{\frac{1}{2}}}-\frac{x^{\frac{2}{2}}}{8 a^{\frac{3}{2}}}-$ $\frac{x^{\frac{2}{2}}}{16 a^{\frac{1}{2}}}$, c. that is, $y=a^{\frac{7}{2} x^{\frac{1}{2}}}$ into $1-\frac{x}{2 a}-\frac{x^{2}}{8 a^{2}}-\frac{x^{3}}{16 a^{3}}$, \&c. Here x cannot be negative; for then $x^{\frac{3}{2}}$ would be an impoffible quantity. Nor can x be greater than a; for then the converging quantity $\frac{x}{a}$, or the Root of the Scale by which the Series is exprefs'd, would be greater than Unity, and confeqüently the Series would diverge, and not converge as it ought to do. The Limit between converging and diverging will be found, by putting $x=a$, and therefore $y=0$; in which cafe we fhall have the identical Numeral Series $I=\frac{x}{2}$ $+\frac{7}{8}+\frac{1}{18}$, \&c. of the fame nature with fome of thofe, which we have elfewhere taken notice of. So that we may take x of any intermediate Value between 0 and a, in order to have a converging Series. But the nearer it is taken to the Limit o, fo much fafter the Series will converge to the true Root; and the nearer it is taken to the Limit a, it will converge fo much the flower. But it will however
however converge, if x be taken never fo little lefs than a. And by Analogy, a like Judgment is to be made in all other cafes.

The Limits and other affections of y are likewife difcoverable from this Series. When $x=0$, then $y=0$. When x is a nafcent quantity, or but juft beginning to be pofitive, all the Terms but the firft may be neglected, and y will be a mean proportional between a and x. Alfo $y=0$, when the affirmative Term is equal to all the negative Terms, or when $\mathrm{I}=\frac{x}{2 a}+\frac{x^{2}}{8 a^{2}}+\frac{x^{3}}{36 a^{5}}, \& \mathrm{cc}$. that is, when $x=a$. For then $I=\frac{1}{2}+\frac{\mathrm{r}}{5}+\frac{1}{\mathrm{~T}}$, Sxc. as above. Laftly, y will be a Maximum when the difference between the affirmative Term and all the negative Terms is greateft, which by Prob.3. will be found when $x=\frac{1}{2} a$.

Now the Figure or Curve that may be adapted to this Equation, and to this Series, and which will have the fame Limitations that they have, is the Circle ACD , whofe Diameter is $\mathrm{AD}=a$, its $\mathrm{Ab}-$ fcifs $\mathrm{AB}=x$, and its perpendicular Ordinate $\mathrm{BC}=y$. For as the Ordinate $\mathrm{BC}=y$ is a mean proportional between the Segments of the Diameter $\mathrm{AB}=x$ and $\mathrm{BD}=a-x$, it will be $y y=a x-x x$. And therefore the Ordinate $\mathrm{BC}=y$ will be exprefs'd by the foregoing Series. But it is plain from the na-
 ture of the Circle, that the Abfcifs $A B$ cannot be extended backwards, fo as to become negative ; neither can it be continued forwards beyond the end of the Diameter D. And that at A and D, where the Diameter begins and ends, the Ordinate is nothing. And the greatef Ordinate is at the Center, or when $\mathrm{AB}=\frac{1}{2} \mathrm{AD}$.

Sect. VI. Tranfition to the Metbod of Fluxions.

THHE learned and fagacious Author having thus accomplifh'd one part of his defign, which was, to teach the Methoil of converting all kinds of Algebraic Quantities into fimple Terms, by reducing them to infinite Series: He now goes on to shew the ufe and application of this Reduction, or of thefe Series, in the Method of Fluxions, which is indeed the principal defign of this Treatife. For this Method has fo near a connexion with, and dependence upon the foregoing, that it would be very lame and defective without it. He lays down the fundamental Principles of
this Method in a very general and fcientifick manner, deducirg them from the received and known laws of local Motion. Nor is this inverting the natural order of Science, as fome have pretended, by introducing the Doctrine of Motion into pure Geometrical Specalations. For Geometrical and Analytical Quantities are beft conceived as generated by local Motion; and their properties may as well be derived from them while they are generating, as when their generation is fuppos'd to be already accomplinh'd, in any other way. A right line, or a curve line, is defcribed by the motion of a point, a furface by the motion of a line, a folid by the motion of a furface, an angle by the rotation of a radius; all which motions we may conceive to be perform'd according to any ftated law, as occafion thall require. Thefe generations of quantities we daily fee to obtain in rerum natur \hat{a}, and is the manner the ancient Geometricians had often recourfe to, in confidering their production, and then deducing their properties. from fuch actual defcriptions. And by analogy, all other quantities, as well as thefe continued geometrical quantities, may be conceived as generated by a kind of motion or progrefs of the Mind.

The Method of Fluxions then fuppofes quantities to be generated by local Motion, or fomething analogous thereto, tho' fuch generations indeed may not be effentially neceffary to the nature of the thing fo generated. They might have an exiftence independent of thefe motions, and may be conceived as produced many other ways, and yet will be endued with the fame properties. But this conception, of their being now.generated by local Motion, is a very fertile notion, and an exceeding ufeful artifice for difcovering their properties, and a great help to the Mind for a clear, diftinct, and methodical perception of them. For local Motion fuppofes a notion of time, and time implies a fucceffion of Ideas. We eafily diftinguifh it into what was, what is, and what will be, in thefe generations of quantities; and fo we commodioufly confider thofe things by parts, which would be too much for our faculties, and extream difficult for the Mind to take in the whole together, without fuch artificial partitions and diftributions.

Our Author therefore makes this eafy fuppofition, that a Line may be conceived as now defcribing by a Point, which moves either equably or inequably, either with an uniform motion, or elfe according to any rate of continual Acceleration or Retardation. Velacity is a Mathematical Quantity, and like all fuch, it is fufceptible of infinite gradations, may be intended or remitted, may be increafed
or diminin'd in different parts of the fpace deferibed, according to an infinite varicty of ftated Laws. Now it is plain, that the face thus deferibed, and the law of acceleration or retardation, (that is, the velocity at every point of time,) muft have a mutual relation to each other, and muft mutually determine each other; fo that one of them being affign'd, the other by neceliary inference may be derived from it. And therefore this is ferictly a Geometrical Problem, and capable of a full Determination. And all Geometrical Propofitions once demonftrated; or duly inveftigated, may be fafely made ufe of, to derive other Propofitions from them. This will divide the prefent Problem into two Cafes, according as either the Space or Velocity is affign'd, at any given time, in order to find the other. And this has given occafion to that diftinction which has fince obtain'd, of the direet and inverfe Metbod of Fluxions, each of which we fhall now confider apart.
56. In the direct Method the Pioblem is thus abftractedly propofed. Erom the Space defcribed, being continually given, or affimed, or being known at any point of Time afjign'd; to find the Velocity of the Motion at that Time. Now in equable Motions it is well known, that the Space defcribed is always as the Velocity and the Time of defcription conjunctly; or the Velocity is directly as the Space deferibed, and reciprucally as the Time of defcription. And even in inequable Motions, or fuch as are continually accelerated or retarded, according to fome ftated Law, if we take the Spaces and Times very fmall, they will make a near approach to the nature of equable Motions; and ftill the nearer, the fmaller thofe are taken. But if we may fuppofe the Times and Spaces to be indefinitely fmall, or if they are nafcent or evanefcent quantities, then we fhall have the: Velocity in any infinitely little Space, as that Space directly, and as the tempufcutum inverfely. This property therefore of all inequable Motions being thus deduced, will afford us a medium for folving the prefent Problem, as will be fhewn afterwards. So that the Space defcribed being thus continually given, and the whole time of its defrription, the Velocity at the end of that time will be thence determinable.
57. The general abftract Mechanical Problem, which amounts to the fame as what is call'd the inverfe Method of Fluxions, will be this. From the Velocity of the Motion being continually given, to determine the Space defcribed, at any point of Time affignid. For the Solution of which we fhall have the affiftance of this Mechanical Theorem, that in inequable Motions, or when a Point defcribes a Line

Line according to any rate of acceleration or retardation, the indefinitely little Space defcribed in any indefinitely little Time, will be in a compound ratio of the Time and the Velocity ; or the fpatiolum will be as the velocity and the tempufculum conjunctly. This being the Law of all equable Motions, when the Space and Time are any finite quantities, it will obtain alfo in all inequable Motions, when the Space and Time are diminifh'd in infinitum. For by this means all inequable Motions are reduced, as it were, to equability. Hence the Time and the Velocity being continually known, the Space defcribed may be known alfo; as will more fully appear from what follows. This Problem, in all its cafes, will be capable of a juft determination ; tho' taking it in its full extent, we mult acknowledge it to be a very difficult and operofe Problem. So that our Author had good reafon for calling it mol:fiftmum oु ommium difficillimum problema.
58. To fix the Ideas of his Reader, our Author illuftrates his general Problems by a particular Example. If two Spaces x and y are defrribed by two points in fuch manner, that the Space x being uniformly increafed, in the nature of Time, and its equable velocity being reprefented by the Symbol \dot{x}; and if the Space y increafes inequably, but after fuch a rate, as that the Equation $y=x x$ fhall always determine the relation between thofe Spaces; (or x being continually given, y will be thence known;) then the velocity of the increafe of y fhall always be reprefented by $2 x \dot{x}$. That is, if the fymbol \dot{y} be put to reprefent the velocity of the increafe of y, then will the Equation $\dot{y}=2 \times x \dot{x}$ always obtain, as will be thewn hereafter. Now from the given Equation $y=2 x$, or from the relation of the Spaces y and x, (that is, the Space and Time, or its reprefentative, being continually given, the relation of the Velocities $\dot{y}=2 x \dot{x}$ is found, or the relation of the Velocity \dot{y}, by which the Space increafes, to the Velocity \dot{x}, by which the reprefentative of the Time increafes. And this is an inftance of the Solution of the firft general Problem, or of a particular Queftion in the direct Method of Fluxions. But vice versâ, if the laft Equation $\dot{y}=2 x \dot{x}$ were given, or if the Velocity \dot{y}, by which the Space y is defcribed, were continually known from the Time x being given, and its Velocity \dot{x}; and if from thence we Chould derive the Equation $y=x x$, or the relation of the Space and Time: This would be an inftance of the Solution of the fecond general Problem, or of a particular Queftion of the inverfe Method of Fluxions. And in analogy to this defcription of Spaces by moving points, our Author confiders all other quantities whatever as generated
nerated and produced by continual augmentation, or by the perpetual acceffion and accretion of new particles of the fame kind.
59. In fettling the Laws of his Calculus of Fluxions, our Author very fkilfully and judicioufly difengages himfelf from all confideration of Time, as being a thing of too Phyfical or Metaphyfical a nature to be admitted here, efpecially when there was no abfolute neceflity for it. For tha' all Motions, and Velocities of Motion, when they come to be compared or meafured, may feem neceffarily to include a notion of Time; yet Time, like all other quantities, may be reprefented by Lines and Symbols, as in the foregoing example, efpecially when we conccive them to increafe uniformly. And thefe reprefentatives or proxies of Time, which in fome meafure may be made the objects of Senfe, will anfwer the prefent purpofe as well as the thing itfelf. So that Time, in fome fenfe, may be faid to be eliminated and excluded out of the inquiry. By this means the Problem is no longer Phyfical, but becomes much more fimple and Geometrical, as being wholly confined to the defcription of Lines and Spaces, with their comparative Velocities of increafe and decreafe. Now from the equable Flux of Time, which we conceive to be generated by the continual acceffion of new particles, or Moments, our Author has thought fit to call his Calculus the Metbod of Fluxions.

60, 6 I . Here the Author premifes fome Definitions, and other neceffary preliminaries to his Method. Thus Qantities, which in any Problem or Equation are fuppos'd to be fufceptible of continual increafe or decreafe, he calls Fhuchts, or flowing Quontities; which are fometimes call'd eariable or indeterminate quantities, becaufe they are capable of receiving an infinite number of particular values, in a regular order of fucceffion. The Velocities of the increafe or decreafe of fuch quantities are call'd their Fluxions; and quantities in the fame Problem, not liable to increafe or decreafe, or whofe Fluxions are nothing, are call'd confant, given, invariable, and determinate quantitics. This diftinction of quantities, when once made, is carefully obferved through the whole Problem, and infinuated by proper Symbols. For the firft Letters of the Alphabet are generally appropriated for denoting conitant quantities, and the laft Letters commonly fignify variable quantities, and the fame Letters, being pointed, reprefent the Fluxions of thofe variable quantities or Fluents refpectively. This diftinction between thefe quantities is not altogether arbitrary, but has fome foundation in the nature of the thing, at leaft during the Solution of the prefent Problem. For the flowing

240

 The Method of Fluxions.or variable quantities may be conceived as now generating by Motiors, and the conftant or invariable quantities as fome how o other already generated. Thus in any given Circle or Parabola, the Diameter or Parameter are conftant lines, or already generated; but the Abfcifs, Ordinate, Area, Curve-line, \&ic. are flowing and variable quantities, becaufe they are to be underftood as now defcribing by local Motion, while their properties are derived. Another diftinction of thefe quantities may be this. A conftant or given line in any Problem is linea quadom, but an indeterminate line is linea quavis vel quacunque, becaufe it may admit of infinite values. Or laftiy, conftant quantities in a Problem are thofe, whofe ratio to a common Unit, of their own kind, is fuppos'd to be known; but in variable quantities that ratio cannot be known, becaufe it is varying perpetually. This diftinction of quantities however, into determinate and indeterminate, fubfifts no longer than the prefent Calculation requires; for as it is a diftinction form'd by the Imagination only, for its own conveniency, it has a power of abolifhing it, and of converting determinate quantities into indeterminate, and vice versa, as occafion may require ; of which we fhall fee Inftances in what follows. In a Problem, or Equation, thete may be any number of conftant quantities, but there muft be at leaft two that are flowing and indeterminate ; for one cannot increafe or diminifh, while all the reft continue the fame. If there are more than two variable quantities in a Problem, their relation ought to be exhibited by more than one Equation.

ANNOTATIONS on Prob.r.

OR,

The relation of the flowing Quantities being given, to determine the relation of their Fluxions.

Sect. I. Concerning Fluxions of the firf order, and to find their Equations.
HE Author having thus propofed his fundamental Problems, in an abftract and general manner, and gradually brought them down to the form moft convenient fors his Method; he now proceeds to deliver the Precepts of Solution, which he illuftrates by a fufficient variety of Examplés, referving the Demonftration to be given afterwards, when his Readers will be better prepared to apprehend the force of it, and when their notions will be better fettled and confirm'd. There Precepts of Solution, or the Rules for finding the Fluxions of any given Equation, are very Mort, elegant, and comprehenfive ; and appear to have but little affinity with the Rules ufually given for this purpofe: But that is owing to their great degree of univerfality. We are to form, as it were, fo many different Tables for the Equation, as there are flowing quantities in it, by difpofing the Terms according to the Powers of each quantity, fo as that their Indices may form an Arithmetical Progreffion. Then the Terms are to be multiply'd in each cafe, either by the Progreffion of the Indices, or by the Terms of any other Arithmetical Progreffion, (which yet hould have the fame common difference with the Progreftion of the Indices;)
as alfo by the Fluxion of that Fluent, and then to be divided by the Fluent iteelf. Laft of all, thefe Terms are to be collected, according to their proper Signs, and to be made equal to nothing; which will be a new Equation, exhibiting the relation of the Fluxions. This procefs indeed is not fo fhort as the Method for taking Fluxions, (to be given prefently,) which he elfewhere delivers, and which is commonly follow'd ; but it makes fufficient amends by the univerfality of it, and by the great varicty of Solutions which it will afford. For we may derive as many different Fluxional Equations from the fame given Equation, as we Chall think fit to affume different Arithmetical Progreffions. Yet all thefe Equations will agree in the main, and tho' differing in form, yet each will truly give the relation of the Fluxions, as will appear from the following Examples.
2. In the firf Example we are to take the Fluxions of the Equation $x^{3}-a x^{2}+a x y-y^{3}=0$, where the Terms are always brought over to one fide. Thefe Terms being difpofed according to the powers of the Fluent x, or being confider'd as a Number exprefs'd by the Scale whofe Root is x, will ftand thus $x^{3}-a x^{2}+$ ay $x^{1}-y^{5} x^{\circ}=0$; and affuming the Arithmetical Progreffion 3, 2, 1,0 , which is here that of the Indices of x, and multiplying each Term by each refpectively, we fhall have the Terms $3 x^{3}-2 a x^{2}$ +ay: *; which again multiply'd by $\frac{\dot{x}}{x}$, or $\dot{x} x^{-r}$, according to the Rule, will make $3 \dot{x} x^{2}-2 a \dot{x} x+a y \dot{x}$. Then in the fame Equation making the other Fluent y the Root of the Scale, it will ftand thus, $-y^{3}+0 y^{2}+a x y^{2}-a x^{2} y^{0}=0$; and affuming the Arith$+x^{3}$
metical Progreffion 3, 2, I, 0, which alfo is the Progreffion of the Indices of y, and multiplying as before, we fhall have the Terms $-3 y^{3} *+a x y *$, which multiply'd by $\frac{\dot{y}}{y}$, or $\dot{y} y^{-1}$, will make $-3 \dot{y} y^{2}+a x \dot{y}$. Then collecting the Terms, the Equation $3 \dot{x} x^{2}-$ $2 a x \dot{x}+a y \dot{x}-3 y y^{2}+a x y=0$ will give the required relation of the Fluxions. For if we refolve this Equation into an Analogy, we fhall have $\dot{x}: y:: 3 y^{2}-a x: 3 x^{2}-2 a x+a y$; which, in all the values that x and y can affume, will give the ratio of their Fluxions, or the comparative velocity of their increafe or decreafe, when they flow according to the given Equation.

Or to find this ratio of the Fluxions more immediately, or the value of the Fraction $\frac{y}{x}$ by fewer fteps, we may proceed thus. Write down the Fraction $\frac{y}{x}$ with the note of equality after it, and in the

Numerator of the equivalent Fraction write the Terms of the Equation, difpos'd according to x, with their refpective figns; each being multiply'd by the Index of x in that Term, (increafed or diminifh'd, if you pleafe, by any common Number,) as alfo divided by x. In the Denominator do the fame by the Terms, when difpofed according to y, only changing the figns. Thus in the prefent Equation $x^{3}-a x^{2}+a x y-y^{3}=0$, we flall have at once $\dot{y}=\frac{3 x^{2}-2 a x+a y}{3 y^{2}-a x}$.

Let us now apply the Solution another way. The Equation x^{3} $-a x^{2}+a x y-y^{3}=0$ being order'd according to x as before, will be $x^{3}-a x^{2}+a y x^{2}-y^{3} x^{0}=0$; and fuppofing the Indices of x to be increas'd by an unit, or affuming the Arithmetical Progreffion $\frac{4 \dot{x}}{x}, \frac{3 \dot{x}}{x}, \frac{2 \dot{x}}{x}, \frac{\dot{x}}{x}$, and multiplying the Terms refpectively, we fhall have thefe Terms $4 x^{2}-3 a x x+2 a y x-y^{3} x x^{-1}$. Then ordering the Terms according to y, they will become - $y^{3}+0 y^{2}$ $+a x y^{3}+x^{3} y^{\circ}=0$; and fuppofing the Indices of y to be diminin'd -ax
by an unit, or afluming the Arithmetical Progreffion $\frac{2 \dot{y}}{y}, \frac{\dot{y}}{y}, \frac{c \dot{y}}{y}, \frac{-\dot{y}}{y}$, and multiplying the Terms refpectively, we fhall have thefe Terms $-2 y y^{2} *^{*}-x^{3} y^{-1}+a x^{2} y^{-1}$. So that collecting the Terms, we fhall have $4 x^{2}-3 a \dot{x} x+2 a y \dot{x}-y^{3} \dot{x} x^{-1}-2 \dot{y} y^{2}-x^{3} y^{-1}+$ $a x^{2} y y^{-r}=0$, for the Fluxional Equation required. Or the ratio of the Fluxions will be $\frac{y}{\dot{x}}=\frac{4 x^{2}-3 a x+2 a y-y^{3} z-1}{2 j^{2}+x+2 y^{3}-1-a x^{2} y-1}$; which ratio may be found imniediately by applying the foregoing Rule.

Or contrary-wife, if we multiply the Equation in the firt form by the Progreflion $\frac{2 \dot{x}}{x}, \frac{\dot{x}}{x}, \frac{c \dot{x}}{x}, \frac{-\dot{x}}{x}$, we hall have the Terms $2 x_{i x}^{2}$ - anx $x+y^{3} \dot{x}^{-1}$. And if we multiply the Equation in the fecond form by $\frac{4 j}{y}, \frac{3 \dot{y}}{y}, \frac{2 \dot{y}}{y}, \frac{j}{y}$, we fhall have the Terms $-4 \dot{j} y^{2} *$ $+2 a x y+x^{3} y y^{-1}-a x^{2} \cdot y^{-1}$. Therefore collecting 'tis $2 \dot{x} x^{2}$ - $a \dot{x} x^{x}$ $+y^{3} x^{-8}-4 y^{2}+2 a x y+x^{5} y^{-1}-a x^{2} y y^{-1}=0$. Or the ratio of the Fluxiors will be $\frac{y}{x}=\frac{2 x^{2}-a x+x^{3} x^{-1}}{41^{2}-2 a x-x^{3}-1+a x^{2}-1}$, which might lave been found at once by the foregoing Rule.

And in general, if the Equation $x^{3}-a x^{3}+a x y-y^{3}=0$, in the form $x^{3}-a a^{2}+a x^{3}-y^{3} x^{2}=0$, be multiply'd by the Terms of this Arithmetical Progrefion $\frac{m+3}{x} \dot{x}, \frac{m+2}{x} \dot{x}, \frac{m+1}{x} \dot{x}, \frac{m}{x} \dot{x}$; it will produce the Terms $\overline{m+3} \times-\overline{m+2} x^{2} \times x+\overline{m+1} \times x-m y^{3} x^{-1}$;
and if the fame Equation, reduced to the form $-y^{3}+o y^{2}+a x y^{3}$ $+x^{3} y^{0}=0$, be multiply'd by the Terms of this Arithmetical Pro-- $a x^{2}$
greffion $\frac{n+3}{y} \dot{y}, \frac{n+2}{y} \dot{y}, \frac{n+1}{y} \dot{y}, \frac{n}{y} \dot{y}$, it will produce the Terms $-\overline{n+3} \dot{y} y^{2}$, $*+\overline{n+1} a x \dot{y}+n x^{3} \dot{y} y^{-1}-n a x^{2} y y^{-1}$. Then collecting the Terms, we fhall have $m+3 \dot{x} x^{2}-\overline{m+2} a \dot{x} x+\overline{m+1} a \dot{x} y-m y^{3} \dot{x} x^{-1}$ $-\overline{n+3} y^{2}{ }^{*}+\overline{n+1} a x \dot{y}+i x^{3} j y^{-5}-n a x^{2} \dot{y} y^{-1}=0$, for the Fluxional Equation required. Or the ratio of the Fluxions will be $\frac{\dot{v}}{\dot{x}}=\frac{\overline{n+3} x^{2}-\overline{m+2} a x+\overline{n+1} a y-m y^{3} x^{-1}}{\overline{n+3 y^{2}}-\overline{n+1} a x-n x^{3},-\mathrm{s}+a x^{2} y-5}$; which might have been found immediately from the given Equation; by the foregoing Rule.

Here the general Numbers m and n may be determined pro lubitu, by which means we may obtain as many, Fluxional Equations as we pleafe, which will all belong to the given Equation. And thus we may always find the fimpleft Expreffion, or that which is beft accommodated to the prefent exigence. Thus if we make $m=0$, and $n=0$, we hall have $\frac{\dot{y}}{\dot{x}}=\frac{3 x^{2}-2 a x+a y}{3 y^{2}-a x}$, as found before. Or if we make $n=1$, and $n=-1$, we fhall have $\frac{\dot{y}}{\dot{x}}=\frac{4 x^{2}-3 a x+2 a y-y^{3} x-1}{2 y^{2}+x^{3} y-1-4 x^{2} y-1}$, as before. Or if we make $n=-\mathrm{I}$, and $n=\mathrm{I}$, we fhall have $\frac{\dot{y}}{x}=\frac{2 x^{2}-a x+3^{3}-1}{4 y^{2}-2 a x-x^{3} y^{-1}+a x^{2} y-1}$, as before. Or if we make $n=-3$, and $n=-3$, we thall have $\frac{\dot{y}}{\dot{x}}=\frac{* a x-2 a y+3 y^{3} x^{-1}}{* * 20 x+3 x^{3} j^{-1}-3^{4} x^{2} y^{-x}}=$ $\frac{a x^{2} y-2 a \cdot x^{2}+3 y^{4}}{2 a x x^{2} y+3 x^{4}-3 a x^{3}}$. And fo of others. Now this variety of Solutions will beget no ambiguity in the Conclufion, as poffibly might have been furpected; for it is no other than what ought neceffarily to arife, from the different forms the given Equation may acquire, as will appear afterwards. If we confine ourfelves to the Progreffion of the Indices, it will bring the Solution to the common Mcthod of taking Fluxions, which our Author has taught elfewhere, and which, becaufe it is eafy and expeditious, and requires no certain order of the Terms, I fhall here fubjoin.

For every Term of the given Equation, fo many Terms muft be form'd in the Fluxional Equation, as there are flowing Quantities in that Term. And this muft be done, (I.) by multiplying the Term by the Index of each flowing Qantity contain'd in it. (2.) By dividing it by the quantity itfelf; and, (3.) by multiplying by its Fluxion. Thus in the foregoing Eqtiation $x^{3}-a x^{2}+a y x-y^{3}$ $=0$, the Fluxion belonging to the Term x^{3} is $\frac{31^{3} \dot{x}}{x}$, or $3^{x^{2}} \dot{x}$.

The Fluxion belonging to $-a x^{2}$ is $-\frac{2 a x^{2} \dot{x}}{x}$, or $-2 a x \dot{x}$. The Fluxion belonging to $a y x$ is $\frac{a y x \dot{y}}{y}+\frac{a y x \dot{x}}{x}$, or $a x \dot{y}+a y \dot{x}$. And the Fluxion belonging to $-y^{3}$ is $-\frac{31^{3} j}{y}$, or $-3 y^{2} \dot{y}$. So that the Fluxion of the whole Equation, or the whole Fluxional Equation, is $3 x^{2} x-2 a x x^{2}+a y x+a y x-3 y^{2} y=0$. Thus the Equation $x^{m}=y$, will give $m \dot{x} x^{m-1}=\dot{y}$; and the Equation $x^{m} z^{n}=y$, will give $m \dot{x} x^{m-1} z^{n}+n x^{m} \dot{z} 2^{n-1}=\dot{y}$ for its Fluxional Equation. And the like of other Examples.

If we take the Author's fimple Example, in pag. 19, or the Equation $y=x x$, or rather $a y-x^{2}=0$, that is $a y x^{0}-x^{2} y^{\circ}=0$, in order to find its mof general Fluxional Equation; it may be perform'd by the Rule before given, fuppofing the Index of x to be encreas'd by m, and the Index of y by n. For then we fhall have directly $\frac{\dot{y}}{\dot{x}}=\frac{m a n x-x-\overline{m+2} x}{n x^{2} y^{-1}-\bar{n}+1 a}$. For the firft Term of the given Equation being $a y x^{\circ}$, this multiply'd by the Index of x increas'd by m, that is by m, and divided by x, will give may x^{-1} for the firit Term of the Numerator. Alfo the fecond Term being - $x^{2} y^{\circ}$, this multiply'd by the Index of x increas'd by m, that is by $m+2$, and divided by x, will give $-\overline{n+2 x}$ for the fecond Term of the Numerator. Again, the firft Term of the given Equation may be now - $x^{2} y^{\circ}$, which multiply'd by the Index of y increas'd by n, that is by n, and divided by y, will give (changing the fign) $n x^{2} y^{-1}$ for the firf Term of the Denominator. Alfo the fecond Term will then be ay x°, which multiply'd by the Index of y increas'd by n, that is ty $n+1$, and divided by y, will give (changing the Sign) $-\overline{n+1} a$ for the fecond Term of the Denominator, as found above. Now from this general relation of the Fluxions, we may deduce as many particular ones as we pleafe. Thus if we make $m=0$, and $n=0$, we fhall have $\frac{\dot{y}}{\bar{x}}=\frac{2 x}{a}$, or $a \dot{y}=2 x \dot{x}$, agreeable to our Author's Solution in the place before cited. Or if we make $m=-2$, and $n=-1$, we fhall have $\frac{\dot{y}}{x}=\frac{2 a y x-1}{x^{2}-1}=\frac{2 a y^{2}}{x^{3}}$. Or if we make $n=0$, and $n=-\mathrm{I}$, we thall have $\frac{y}{\dot{x}}=\frac{2 x}{x^{2} j_{3}}=\frac{2 y}{x}$. Or if we make $n=0$, and $n=-2$, we fhall have $\frac{n}{x}=\frac{2 a+x-1}{a}=\frac{2 \eta}{x}$, as beforc. All which, and innumerable other cafes, may be eafily proved by a fubfitution of equivalents. Or we may prove it gen:-
rally thus. Becaufe by the given Equation it is $y=x^{2} a^{-r}$, in the value of the ratio $\frac{\dot{y}}{\dot{x}}=\frac{m a y x^{-1}-\overline{n+2} x}{n x^{2} y^{-1}-\sqrt{n+1} a}$ for y fubftitute its value, and

3. The Equation of the fecond Example is $2 y^{3}+x^{2} y-2 c y z$ $+3 y z^{2}-z^{3}=0$, in which there are three flowing quantities y, x, and \approx, and therefore there muft be three operations, or three Tables muft be form'd. Firft difpofe the Terms according to y, thus; $2 y^{3}+0 y^{2}+x^{2} y-z^{3} y^{0}=0$, and multiply by the Terms of the Pro-

$$
\begin{aligned}
& -2 c z \\
& +3 z^{2}
\end{aligned}
$$

greffion $2 \times j y^{-1}, \mathrm{I} \times \dot{y} y^{-1}, \circ \times \dot{y} y^{-1},-\mathrm{I} \times \dot{y} y^{-\mathrm{r}}$, refpectively, (where the Coefficients are form'd by diminifhing the Indices of y by the common Number I, and the refulting Terms will be $4 y y^{2} * *+z^{3} y y^{-1}$. Secondly, difpofe theTerms according to x, thus: $y x^{2}+0 x+2 y^{3} x^{0}=0_{2}$

$$
\begin{aligned}
& -2 c y z \\
& +3 y z^{2} \\
& -z^{3}
\end{aligned}
$$

and multiply by the Terms of the Progreffion $2 \times \dot{x} x^{-\mathrm{r}}, \mathrm{I} \times \dot{x} x^{-\mathrm{r}}$, $0 \times \dot{x} x^{-1}$, (where the Coefficients are the fame as the Indices of x,) and the only refulting Term here is $+2 y \dot{x} x * *$. Laftly, difpofe the Terms according to z, thus; $-z^{3}+3 y z^{2}-2 c y z+x^{2} y z^{0}=0$,

$$
+2 y^{3}
$$

and multiply by the Progreffion $3 \times \dot{z} z^{-1}, 2 \times \dot{z} z^{-1}, 1 \times \dot{z} z^{-1}, 0 \times \dot{z} z^{-1}$, (where the Coefficients are alfo the fame as the Indices of \mathcal{z}, and the Terms will be - $3 \dot{z} z^{2}+6 y \dot{z} z--2 c y \dot{z}$. Then collecting all thefe Terms together, we fhall have the Fluxional Equation $4 y y^{2}+$ $z^{3} y y^{-1}+2 v x-3 z z^{2}+6 y z z-2 c y z=0$.

Here we have a notable inftance of our Author's dexterity, at finding expedients for abbreviating. For in every one of thefe Operations fuch a Progreffion is chofe, as by multiplication will make the greateft deftruction of the Terms. By which means he arrives at the fhorteft Expreffion, that the nature of the Problem will allow. If we fhould feck the Fluxions of this Equation by the ufual method, which is taught above, that is, if we always affume the Progreflions of the Indices, we fhall have $6 y^{2}+2 x x y+x^{2} \dot{y}-2 c y=$ $-2 c y \dot{z}+3 \dot{y} z^{2}+6 y z \dot{z}-3 \dot{z} z^{2}=0$; which has two Terms more than the other form. And if the Progreffions of the Indices are increas'd, in each care, by any common general Numbers, we may form the moft general Exprefion for the Eluxional Equation, that the Problem will admit of.
4. On occafion of the lait Example, in which are three Fluents and their Fluxions, our Author makes an ufeful Obfervation, for the Reduction and compleat Determination of fuch Equations, tho' it be derived from the Rules of the vulgar Algebra; which matter may be confider'd thus. Every Equation, confifting of two flowing or variable Quantities, is what correfponds to an indetermin'd Problem, admitting of an infinite number of Anfwers. Therefore one of thofe quantities being affumed at pleafure, or a particular value being affign'd to it, the other will alio be compleatly determined. And in the Fluxional Equation derived from thence, thofe particular values being fubftituted, the Ratio of the Fluxions will be given in Numbers, in any particular cafe. And one of the Fluxions being taken for Unity, or of any determinate value, the value of the other may be exhibited by a Number, which will be a compleat Determination.

But if the given Equation involve three flowing or indeterminate Quantities, two of them muft be affumed to determine the third; or, which is the fame thing, fome other Equation muft be either given or affumed, involving fome or all the Fluents, in order to a compleat Determination. For then, by means of the two Equations, one of the Fluents may be eliminated, which will bring this to the former cafe. Alfo two Fluxional Equations may be derived, involving the three Fluxions, by means of which one of them may be eliminated. And fo if the given Equation fhould involve four Fluents; two other Equations fhould be either given or affumed, in order to a compleat Determination. This will be fufficiently explain'd by the two following Examples, which will alfo teach us how complicate Terms, fuch as compound Fractions and Surds, are to be managed in this Method.

5, 6. Let the given Equation be $y^{2}-a^{2}-x \sqrt{a^{2}-x^{2}}=0$, of which we are to take the Fluxions. To the two Fluents y and x we may introduce a third \approx, if we affume another Equation. Let that be $\approx=x \sqrt{a^{2}-x^{2}}$, and we Mall have the two Equations $y^{2}-a^{2}-z=0$, and $a^{2} x^{2}-x^{4}-z^{2}=0$. Then by the foregoing Solution their Fluxional Equations (at leait in one cafe) will be $2 j y-\dot{z}=0$, and $a^{2} \dot{x} x-2 \dot{x} x^{3}-\dot{z} z=0$. Thefe two Fluential Equations, and their Fluxional Equations, may be reduced to one Fluential and one Fluxional Equation, by the ufual methods of Reduction : that is, we may eliminate z and $\dot{\approx}$ by fubftituting their values $y=-a$ and $2 j y$. Then we hall have $y^{2}-a^{2}-x \sqrt{a^{2}-x^{1}}$
$=0$, and $2 \dot{y} y-\frac{a^{2} \dot{x}-2 \dot{x}_{\lambda}^{3}}{\sqrt{a^{2}-x^{2}}}=0$. Or by taking away the furds, 'tis $a^{2} x^{2}-x^{4}-y^{4}+2 a^{2} y^{2}-a^{4}=0$, and then $a^{2} \dot{x} x-2 x x^{3}$ $-2 j y^{3}+2 a^{2} y y=0$.
7. Or if the given Equation be $x^{3}-a y^{2}+\frac{b_{1}^{3}}{a+y}-x^{2} \sqrt{a y+x^{2}}$ $=0$, to find its correfponding Fluxional Equation ; to the two flowing quantities x and y we may introduce two others z and v; and thereby remove the Fraction and the Radical, if we affume the two Equations $\frac{b_{1},}{a+y}=z$, and $x^{2} \sqrt{a y+x x}=v$. Then we Thall have the three Equations $x^{3}-a y^{2}+z-v=0, a z+y z-$ $b_{y}^{3}=0$, and $a y x^{4}+x^{6}-v^{2}=0$, which will give the three Fluxional Equations $3 \dot{x}^{2}-2 a \dot{y} y+\dot{z}-\dot{v}=0, a \dot{z}+y \dot{z}+\dot{y} z$ $-3 b y y^{2}=0$, and $a y x^{4}+4 a y \dot{x} x^{3}+6 x x^{5}-2 v v=0$. Thefe by known Metliods of the common Algebra may be reduced to one Fluential and one Fluxional Equation, involving x and y, and their Fluxions, as is required.
8. And by the fame Method we may take the Fluxions of Binomial or other Radicals, of any kind, any how involved or complicated with one another. As for inftance, if we were to find the Fluxion of $\sqrt{a x+\sqrt{a a-x x}}$, put it equal to y, or make $a x+$ $\sqrt{a a-x x}=y y$. Alfo make $\sqrt{a a-x x}=z$. Then we thall have the two Fluential Equations $a x+z-y^{2}=0$, and $a^{2}-x^{2}$ $-z^{2}=0$, from whence we fhall have the two Fluxional Equations $a \dot{x}+\dot{z}-2 \dot{y} y=0$, and $-2 \dot{x} x-2 \dot{z} z=0$, or $\dot{x} x+\dot{z} z=0$. This laft Equation, if for z and \dot{z} we fubftitute their values $y y$-ax and $2 \dot{y} y-a \dot{x}$, will become $x \dot{x}+2 \dot{y} y^{3}-2 a x \dot{y} y-a \dot{x} y^{2}+a^{2} \dot{x} x$ $=0 ;$ whence $\dot{y}=\frac{a_{\dot{y})^{2}-a^{2} \dot{x}-\dot{x} x}^{2 y^{3}-2 n x y}}{}$. And here if for y we fubftitute its value $\sqrt{a x+\sqrt{a a-x x}}$, we fhall have the Fluxion required $\dot{y}=\frac{a \dot{x} \sqrt{a a-x x}-\dot{x} x}{2 \sqrt{a a-x x} \times \sqrt{a x+\sqrt{a n-x x}}}$. And many other Exam. ples of a like kind will be found in the fequel of this Work.

9, 10, II, 12. In Examp. 5. the propofed Equation is $\underset{Z z+}{ }$ $a x \approx-y^{\prime}=0$, in which there are three variable quantities x, y, and z and therefore the relation of the Fluxions will be $2 \dot{z} z+a \dot{x} z$. $+a x \approx-4 y y^{3}=0$. But as there wants another Fluential Equation, and thence another Fluxional Equation, to make a compleat determination; if only another Fluxional Equation were given or aflumed, we mould have the required relation of the Fluxions x and j_{0} -

Suppofe this Fluxional Equation were $\dot{z}=\dot{x} \sqrt{a x-x x}$; then by fubftitution we fhould have the Equation $\overline{2 z+a x} \times \dot{x} \sqrt{a x-x x}$十 $a x z-4 y^{y^{3}}=0$, or the Analogy $\dot{x}: \dot{y}:: 4 y^{y^{3}}: \overline{2 z+a x} \times$ $\sqrt{a x-x x}+a z$, which can be reduced no farther, (or z cannot be eliminated,) till we have the Fluential Equation, from which the Fluxional Equation $\dot{z}=\dot{x} \sqrt{a x-x x}$ is fuppos'd to be derived. And thus we may have the relation of the Fluxions, even in fuch cafes as we have not, or perhaps cannot have, the relation of the Fluents.

But tho' this Reduction may not perhaps be conveniently perform'd Analytically, or by Calculation, yet it may poffibly be perform'd Geometrically, as it were, and by the Quadrature of Curves; as we may learn from our Author's preparatory Propofition, and from the following general Confiderations. Let the right Line AC, perpendicular to the right Line $A B$, be conceived to move always parallel to itfelf, fo as that its extremity A may defcribe the line $A B$. Let the point C be fixt, or always at the fame diftance from A, and let another point move from A towards C, with a velocity any how accelerated or retarded. The parallel motion of the line AC does not at all affect the progreffive motion of the point moving from A towards.C, but from a combination of thefe two independent motions, it will defcribe the Curve ADH ; while at the fame time the fixt point C will defcribe the right line $C E$, parallel to $A B$. Let the line $A C$ be conceived to move thus, till it comes into the place BE, or BD. Then the line AC is conftant, and remains the fame, while the indefinite or flowing line becomes
 $B D$. Alfo the Areas defrribed at the fame time, ACEB and ADB , are likewife flowing quantities, and their velocities of defcription, or their Fluxions, muft neceffarily be as their refpective defcribing lines, or Ordinates, BE and BD . Let AC or BE be Linear Unity, or a conftant known right line, to which all the other lines are to be compared or refer'd ; juft as in Numbers, a!l other Numbers are tacitely refer'd to I, or to Numeral Unity, as being the fimpleft of all Numbers. And let the Area ADB be fuppos'd to be apply'd to BE, or Linear Unity, by which it will be reduced from the order of Surfaces to that of Lines; and let the refulting line be call'd \approx. That is, make the Area $A D B=\approx \times B E$; and if $A B$ be call'd x, then is the Area $\mathrm{ACEB}=x \times \mathrm{BE}$. Therefore the

Fluxions of thefe Areas will be $\dot{z} \times \mathrm{BE}$ and $\dot{x} \times \mathrm{BE}$, which are as \dot{z} and \dot{x}. But the Fluxions of the Areas were found before to be as BD to BE . So that it is $\dot{z}: \dot{x}:: \mathrm{BD}: \mathrm{BE}=\mathrm{I}$, or $\dot{z}=\dot{x} \times \mathrm{BD}$. Confequently in any Curve, the Fluxion of the Area will be as the Ordinate of the Curve, drawn into the Fluxion of the Abfifs.

Now to apply this to the prefent cafe. In the Fluxional Equa= tion before affumed $\dot{z}=\dot{x} \sqrt{a x-x x}$, if x reprefents the Abfcifs of a Curve, and $\sqrt{a x-x x}$ be the Ordinate; then will this Curve be a Ciicle, and \approx will reprefent the correfponding Area. So that we fee from hence, whether the Area of a Circle can be exhibited or no, or, in general Terms, tho' in the Equation propofed there foould be quantities involved, which camot be determined or exprefs'd by any Geometrical Method, fuch as the Areas or Lengths of Curve-lines; yet the relation of their Fluxions may neverthelefs be found.
13. We now come to the Author's Demonftration of his Solution; or to the proof of the Principles of the Method of Fluxions, here laid down, which certainly deferves to engage our moft ferious attention. And more efpeciaily, becaufe thefe Principles have been lately drawn into debate, without being well confider'd or underftood ; polifibly becaufe this Treatife of our Author's, expreflly wrote on the fubject, had not yet feen the light. As thefe Principles therefore have been treated as precarious at leaft, if not wholly infufficient to fupport the Doctrine derived from them; I fhall endeavour to examine into every the moft minute circumftance of this Demonftration, and that with the utmof circumfection and impartiality.

We have here in the firft place a Definition and a Theorem tor gether. Moments are defined to be the indefinitely finall parts of florving quantities, by the acceffon of zubich, in indefinitely finall portions of time, thofe quantities are continually increafed. The word Moment (momentum, movimentum, à moveo,) by analogy feems to have been borrow'd from Time. For as Time is conceived to be in continual flux, or motion, and as a greater and a greater Time is generated by the acceffion of more and more Moments, which are conceived as the fmalleft particles of Time: So all other flowing Quantitics may be underfond, as perpetually, increafing, by the acceffion of their fmalleft particles, which therefore may not improperly be call'd their Moments. But what are here call'd their finalloft particles, are not to be underftood as if they were Atoms, or of any definite and determinate magnitude, as in the Method of Indivifibles; but to be indefinitely fmall; or continually decreafing, till they are lefs
than any affignable quantities, and yet may then retain all poffible varieties of proportion to one another. That thefe Moments are not chimerical, vifionary, or merely imaginary things, but have an exiftence fui generis, at lcait Mathematically and in the Underftanding, is a necefiary confequence from the infinite Divifibility of Quantity, which I think hardly any body now contefts *. For all continued quantity whatever, tho' not indeed actually, yet mentally may be conceived to be divided in infinitum. Perhaps this may be beft illuftrated by a comparative gradation or progrefs of Magnitudes. Every finite and limited Quantity may be conceived as divided into any finite number of fmaller parts. This Divifion may proceed, and thofe parts may be conceived to be farther divided in very little, but fill finite parts, or porticles, which yet are not Moments. But when thefe particles are farther conceived to be divided, not actually but mentally, fo far as to become of a magnitude Icfs than any affignable, (and what can ftop the progrefs of the Mind ?) then are they properly the Moments which are to be underfood here. As this gradation of diminution certainly includes no abfurdity or contradiction, the Mind has the privilege of forming a Conception of thefe Moments, a poffible Notion at leart, though perhaps not an adequate one; and then Mathematicians have a right of applying them to ufe, and of malsing fuch Inferences from them, as by any ftrict way of reafoning may be derived.

It is objected, that we cannot form an intelligible and adequate Notion of thefe Moments, becaufe fo obfcure and incomprehenfible an Idea, as that of Infinity is, muft needs enter that Notion; and therefore they cught to be excluded from all Geometrical Difquifitions. It may indeed be allowed, that we have not an adequate Notion of them on that account, fuch as exhaufts the whole nature of the thing, neither is it at all neceffary ; for a partial Notion, which is that of their Divifibility fine fine, without any regard to their magnitude, is fufficient in the prefent cafe. There are many other Speculations in the Mathematicks, in which a Notion of Infinity is a neceffary ingredient, which however are admitted by all Geometricians, as ufeful and demonftrable Truths. The Doctrine of commenfurable and incommenfurable magnitudes includes a Notion of Infinity, and yet is received as a very demonftrable Doctrine. We have a perfect Idea of a Square and its Diagonal, and yet we

$$
\mathrm{K} \mathrm{~K} 2 \quad \text { know }
$$

[^0]know they will admit of no finite common meafure, or that their proportion cannot be exhibited in rational Numbers, tho' ever fo fmall, but may by a feries of decimal or other parts continued ad infinitum. In common Arithmetick we know, that the vulgar Fraction $\frac{2}{3}$, and the decimal Fraction 0,666666 , \&c. continued ad infinitum, are one and the fame thing; and therefore if we have a fcientifick notion of the one, we have likewife of the other. When I defcribe a right line with my Pen, fuppofe of an Inch long, I defcribe firft one half of the line, then one half of the remainder, then one half of the next remainder, and fo on. That is, I actually run over all thofe infinite divifions and fubdivifions, before I have compleated the Line, tho' I do not attend to them, or cannot diftinguifh them. And by this I am indubitably certain, that this Series of Fractions $\frac{3}{3}+\frac{1}{4}+\frac{3}{8}+\frac{1}{15}$, \&c. continued ad infinitum, is precifely equal to Unity. Euclid has demonftrated in his Elements; that the Circular Angle of Contact is lefs than any affignable rightlined Angle, or, which is the fame thing, is an infinitely little Angle in comparifon with any finite Angle:- And our Author fhews us ftill greater Myfteries, about the infinite gradations of Angles of Contact. In Geometry we know, that Curves may continually approach towards their Afymptotes, and yet will not actually meet with them; till both are continued to an infinite diftance. We know likewife, that many of their included Areas; or Solids, will be but of a finite and determinable magnitude, even tho' their lengths fhould be actually continued ad infinitum. We know that fome Spirals make infinite Circumvolutions about a Pole, or Center, and yet the whole Line, thas infinitely involved, is but of a finite, determinable, and affignable length. The Methods of computing Logarithms fuppofe, that between any two given Numbers, an infinite number of mean Proportionals may be interpofed; and without fome Notion of Infinity their nature and properties are hardly intelligible or difcoverable. And in general, many of the moft fublime and ufeful parts of knowledge muft be banifh'd out of the Mathematicks, if we are fo fcrupulous as to admit of no Speculations, in which a Notion of Infinity will be neceffarily included. We may therefore as fafely. admit of Moments, and the Principles upon which the Method of Fluxions is here built, as any of the fore-mention'd Speculations.

The nature and notion of Moments being thus eftablifh'd, we may pafs on to the afore-mention'd Theorem, which is this.

The (contemporary) Moments of floweing quantities are as the Velocities of flowing or increafing ; that is, as their Fluxions. Now if this be proved of Lines, it will equally obtain in all flowing quantities whatever, which may always be adequately reprefented and expounded by Lines. But in equable Motions, thc Times being given, the Spaces defcribed will be as the Velocities of Defription, as is known in Mechanicks. And if this be true of any finite Spaces whatever, or of all Spaces in general, it muft alfo obtain in infinitely little Spaces, which we call Moments. And even in Motions continually accelerated or retarded, the Motions in infinitely little Spaces, or Moments, muft degenerate into equability. So that the Velocities of increafe or decreafe, or the Fluxions, will be always as the contemporary Moments. Therefore the Ratio of the Fluxions of Quantities, and the Ratio of their contemporary Moments, will always be the fame, and may be ufed promifcuoufly for each other.
14. The next thing to be fettled is a convenient Notation for thefe Moments, by which they may be diftinguifh'd, reprefented, compared, and readily fuggefted to the Imagination. It has been appointed already, that when $x, y, z, v, \delta z c$. ftand for variable or flowing quantities, then their Velocities of increafe, or their Fluxions, Thall be reprefented by $\dot{x}, \dot{y}, \dot{z}, \dot{v}$, \&cc. which therefore will be proportional to the contemporary Moments. But as thefe are only Velocities, or magnitudes of another Species, they cannot be the Moments themfelves, which we conceive as indefinitely little Spaces, or other analogous quantities. We may therefore here aptly intioduce the Symbol 0 , not to ftand for abfolute nothing, as in Arithmetick, but a vanifhing Space or Quantity, which was juft now finite, but by continually decreafing, in order prefently to terminate in mere nothing, is now become lefs than any affignable Quantity. And we have certainly a right fo to do. For if the notion is intelligible, and implies no contradiction as was argued before, it may furely be infinuated by a Character appropriate to it. This is not affigning the quantity, which would be contrary to the bypothefis, but is only appointing a mark to reprefent it. Then multiplying the Fluxions by the vanifhing quantity o, we flall have the feveral quantities $\dot{x} 0, \dot{y}$, $\dot{z} 0, z_{0}^{0}, \&{ }^{\circ}$. which are vanifhing likewife, and proportional to the Fluxions refpectively. Thefe therefore may now reprefent the contemporary Moments of $x, y, z, v, \& x$. And in general, whatever other flowing.quantities, as well as Lines and
spaces, are reprefented by $x, y, z, v, \& x c$ as o may ftand for a ranifhing quantity of the fame kind, and as $\dot{x}, \dot{y}, \dot{z}, \dot{v}, \& c$. may ftand for their Velocities of increafe or decreafe, (or, if you pleafe, for Numbers proportional to thofe Velocities,) then may $\dot{x} 0, \dot{y}$, $\dot{\sim} 0, \dot{\sim}, ~ \& x$. always denote their refpective fynchronal Moments, or momentary acceffions, and may be admitted into Computations accordingly. Aind this we come now to apply.
15. We muft now have recourfe to a very notable, ufeful, and extenfive property, belonging to all Equations that involve flowing Quantities. Which property is, that in the progrefs of flowing, the Fiuents will continually acquire new values, by the acceffion or contemporary parts of thofe Fluents, and yet the Equation will be equally true in all thefe, cafes. This is a neceffary refult from the Nature and Definition of variable Quantities. Confequently thefe Fluents may be any how increafed or diminifh'd by their contemporary Increments or Decrements; which Fluents, fo increafed or diminifhed, may be fubftituted for the others in the Equation. As if an Equation thould involve the Fluents x and y, together with any given quantities, and X and Y are fuppofed to be any of their contemporary Augments refpectively. Then in the given Equation we may fubtitute $x+X$ for x, and $y+Y$ for y, and yet the Equation will be good, or the equality of the Terms will be preferved. So if X and Y were contemporary Decrements, inftead of x and y we might fubntitute $x-\mathrm{X}$ and $y-\mathrm{Y}$ refpectively. And as this muft hold good of all conternporary Increments or Decrements whatever, whether finitely grent or infinitely little, it will be true likewife of contemporary Moments. That is, inftead of x and y in any Equation, we may fubfitute $x+\dot{x} 0$ and $y+j 0$, and yet we fhall ftill have a good Equation. The tendency of this will appear from what immediately follows.
16. The Author's fingle Example is a kind of Induction, and the proof of this may ferve for all cafis. Let the Equation x^{3} - ax. ${ }^{2}$ $+a x y-y^{3}=0$ be given as before, including the variable quantities x and y, inftead of which we may fubftitute thefe quantities increas'd by their contemporary Moments, or $x+\dot{x} 0$ and $y+j o$ refpectively. Then we thall have the Equation $x+\left.x\right|^{3}$ $-a \times \overline{x+10}{ }^{2}+a \times \overline{x+x 0} \times \overline{y+j 0}-\left.\overline{y+y}\right|^{3}=0$. Thefe Terms being expanded, and reduced to three orders or columns, according as the vaniming quantity 0 is of none, one, or of more dimenfions, will fand as in the Margin.

17; 18. Here the Terms of the firf order, or column, remove or deftroy one another, as being abfolutely equal to nothing by the given Equation. They being therefore expunged, the remaining Terms may all be divided by the common Multiplier o, whatever it is. This being done, all the Terms of the third order will ftill be affected by 0 , of one or more dimenfions, and may therefore be expunged, as infinitely lefs than the others. Laftly, there will only remain thofe of the fecond order or column, that is $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{y} y+a j x-3 \dot{y} y^{2}=0$, which will be the Fluxional Equation required. Q. E. D.

The fame Conclufions may be thus derived, in fomething a different manner. Let X and Y be any fynchronal Augments of the variable quantities x and y, as before, the relation of which quantities is exhibited by any Equation. Then may $x+X$ and $y+Y$ be fubitituted for x and y in that Equation. Suppofe for inftance that $\frac{x^{3}-a x^{2}+a x y-y^{3}=0 \text {; then by fubftitution we thall }}{x+X}$ have $\left.\overline{x+X}\right|^{3}-a \times\left.\overline{x+X}\right|^{2}+a \times \overline{x+X} \times \overline{y+Y}-\left.\overline{y+Y}\right|^{3}$ $=0$; or in terminis expanfis $x^{3}+3 x^{2} \mathrm{X}+3 x \mathrm{X}^{2}+\mathrm{X}^{3}-a x^{2}-$ $2 a x \mathrm{X}-a \mathrm{X}^{2}+a x y+a x \mathrm{Y}+a \mathrm{X} y+a \mathrm{XY}-y^{3}-3 y^{2} \mathrm{Y}-3 y \mathrm{Y}^{2}$ $-\mathrm{Y}^{3}=0$. But the Terms $x^{3}-a x^{2}+a x y-y^{3}=0$ will vanifh out of the Equation, and leave $3 x^{2} \mathrm{X}+3 x \mathrm{X}^{2}+\mathrm{X}^{3}-2 a x \mathrm{X}$ $-a \mathrm{X}^{2}+a x \mathrm{Y}+a \mathrm{X} y+a \mathrm{XY}-3 y^{2} \mathrm{Y}-3 y^{\mathrm{Y}^{2}}-\mathrm{Y}^{3}=0$, for the relation of the contemporary Augments, let their magnitude be what it will. Or refolving this Equation into an Analogy, the ratio of thefe Augments may be this, $\frac{Y}{X}=\frac{3 x^{2}+3 \times X+X^{2}-2 a x-n X+a v}{-u x-\cdots+j^{2}+3^{n}+1^{3}}$. Now to find the ultimate ratio of thefe Augments, or their ratio when they become Moments, fuppofe X and Y to diminifh till they become vanifhing quantities, and then they may be expunged out of this value of the ratio. Or in thofe circumfances it will be $\frac{\mathrm{Y}}{\mathrm{X}}=\frac{3 x^{2}-2 a x+a y}{3 y^{2}-a x}$, which is now the ratio of the Moments. And this is the fame ratio as that of the Fluxions, or it will be $\frac{\dot{y}}{x}=\frac{3 x^{2}-2 n x+a v}{y^{2}-a x}$, or $3 y^{2} \dot{y}-a x \dot{y}=3 x^{2} \dot{x}-2 a x \dot{x}+a y \dot{x}$, as was found before.

In this way of arguing there is no affumption made, but what is juftifable by the rcceived Methods both of the ancient and modern Geometricians. We only defend from a general Propolition, which is undeniable, to a particular cafe which is certainly incheded in it.

That is, having the relation of the variable Quantities, we thence directly deduce the relation or ratio of their contemporary Augments; and having this, we directly deduce the relation or ratio of thofe contemporary Augments when they are nafcent or evanefcent, juft beginning or juft ceafing to be; in a word, when they are Moments, or vanifhing Quantities. To evade this reafoning, it ought to be proved, that no Quantities can be conceived lefs than aflignable Quantities; that the Mind has not the privilege of conceiving Quantity as perpetually diminifhing fine fine; that the Conception of a vanifhing Quantity, a Moment, an Infinitefimal, \&c. includes a contradiction: In fhort, that Quantity is not (even mentally) divifible ad infinitum; for to that the Controverfy muft be reduced at laft. But I believe it will be a very difficult matter to extort this Principle from the Mathematicians of our days, who have been fo long in quiet poffeffion of it, who are indubitably convinced of the evidence and, certainty of it, who continually and fuccefffully apply it, and who are ready to acknowledge the extreme fertility and ufefulnefs of it, upon fo many important occafions.
19. Nothing remains, I think, but to account for thefe two circumftances, belonging to the Method of Fluxions, which our Author briefly mentions here. Firft that the given Equation, whofe Fluxional Equation is to be found, may involve any number of flowing quantities. This has been fufficiently proved already, and we have feen feveral Examples of it. Secondly, that in taking Fluxions we need not always confine ourfelves to the progreffion of the Indices, but may affume infinite other Arithmetical Progreflions, as conveniency may require. This will deferve a little farther illuftration, tho' it is no other than what muft neceffarily refult from the different forms, which any given Equation may affume, in an infinite variety. Thus the Equation $x^{3}-a x^{2}+a x y-y^{3}=0$, being multiply'd by the general quantity $x^{m} y^{n}$, will become $x^{m+3} y^{n}$ $-a x^{m+2} y^{n}+a x^{m+1} y^{n+1}-x^{m} y^{n+3}=0$, which is virtually the fame Equation as it was before, tho' it may affume infinite forms, according as we pleafe to interpret m and n. And if we take the Fluxions of this Equation, in the ufual way, we fhall have $\overline{m+3} \dot{x} x^{m+2} y^{n}+n x^{m+3} y^{n-1}-\overline{m+2} a \dot{x} x^{m+1} y^{n}-n a x^{m+2} \dot{y} y^{n-1}+$ $\left.\overline{m+1} a \dot{x} x^{m}\right)^{n+1}+\overline{n+1} a x^{m+1} \dot{y} y^{n}-m \dot{x} x^{m-1} y^{n+3}-\overline{n+3} x^{m} \dot{y} y^{n+2}$ $=0$. Now if we divide this again by $x^{m} y^{n}$, we thall have $m+3^{\dot{x}} x^{2}$, $+n x^{3} \dot{y} y^{-3}-\overline{m+2} a \dot{x} x-n a x^{2} \dot{y} y^{-1}+\overline{m+1} a \dot{x} y+n+1 a x \dot{y}$ $m \dot{x} x-2 y^{3}-\overline{n+3} \dot{y} y^{2}=0$, which is the fame general Equation as was derived before. And the like may be underfood of all other Examples.

SECT.

Sect. II. Concerning Fluxions of fuperior orders, and the method of deriving their Equations.

IN this Treatife our Author confiders only firf Fluxions, and has not thought fit to extend his Method to fuperior orders, as not directly falling within his prefent purpofe. For tho' he here purfues Speculations which require the ufe of fecond Fluxions, or higher orders, yet he has very artfully contrived to reduce them to firft Fluxions, and to avoid the neceffity of introducing Fluxions of fuperior orders. In his other excellent Works of this kind, which have been publifh'd by himfelf, he makes exprefs mention of them, he difcovers their nature and properties, and gives Rules for deriving their Equations. Therefore that this Work may be the more ferviceable to Learners, and may fulfil the defign of being an Inftitution, I fhall here make fome inquiry into the nature of fuperior Fluxions, and give fome Rules for finding their Equations. And afterwards, in its proper place, I fhall endeavour to fhew fomething of their application and ufe.

Now as the Fluxions of quantities which have been hitherto confider'd, or their comparative Velocities of increafe and decreafe, are themfelves, and of their own nature, variable and flowing quantities alfo, and as fuch are themfelves capable of perpetual increafe and decreafe, or of perpetual acceleration and retardation; they may be treated as other flowing quantities, and the relation of their Fluxions may be inquired and difcover'd. In order to which we will adopt our Author's Notation already publifh'd, in which we are to conceive, that as $x, y, z, \& c$. have their Fluxions $\dot{x}, \dot{y}, \dot{z}, \& c$. fo thefe likewife have their Fluxions $\ddot{x}, \ddot{y}, \ddot{z}, \&$ c. which are the fecond Fluxions of $x, y, z, \& c$. And thefe again, being fill variable quantities, have their Fluxions denoted by \ddot{x}, y, z, \&c. which are the third Fluxions of $x, y, z, \& c$. And thefe again, being ftill flowing quantities, have their Fluxions $\ddot{x}, \ddot{y}, \ddot{\ddot{z}}, 8 x$. which are the fourth Fluxions of $x, y, z, \& c$. And fo we may proceed to fuperior orders, as far as there fhall be occafion. Then, when any Equation is propofed, confilting of variable quantities, as the relation of its Fluxions may be found by what has been taught before; fo by repeating only the fame operation, and confidering the Fluxions as flowing Quantities, the
relation of the fecond Fluxions may be found. And the like for all higher orders of Fluxions.

Thus if we have the Equation $y^{2}-a x=0$, in which are the two Fluents y and x, we Thall have the firft Fluxional Equation $2 j y$ - $a \dot{x}=0$. And here, as we have the three Fluents y, \dot{y}, and \dot{x}, if we take the Fluxions again, we thall have the fecond Fluxional Equation $2 \ddot{y} y+2 \dot{y}^{2}-a \ddot{x}=0$. And here, as there are four Fluents y, \dot{y}, \ddot{y}, and \ddot{x}, if we take the Fluxions again, we thall have the third Fluxional Equation $2 \dot{y} y+2 \ddot{y} \dot{y}+4 \dot{y} \dot{y}-a \dot{x}=0$, or $2 \dot{y} y+$ $6 \ddot{y} \dot{y}-a \dot{x}=0$. And here, as there are five Fluents $y, \dot{y}, \ddot{y}, \dot{y}$, and \dot{x}, if we take the Fluxions again, we fhall have the fourth Fluxional Equation $2 \ddot{y} y+2 \dot{y} \dot{y}+6 \dot{y} \dot{y}+6 \ddot{y^{2}}-a \dot{x}=0$, or $2 \ddot{y} y+8 \dot{y} \dot{y}+6 \dot{y^{2}}$: - $a: \ddot{x}=0$. And here, as there are fix Fluents $y, \dot{y}, \ddot{y}, \dot{y}, \ddot{y}$, and $: \ddot{x}$, if we take the Fluxions again, we fhall have $2 y y+2 \dot{y} \dot{y}+8 \ddot{y} \dot{y}+$
 fifth Fluxional Equation. And fo on to the fixth, feventh, \&c.

Now the Demonftration of this will proceed much after the manner as our Author's Demonftration of firf Fluxions, and is indeed virtually included in it. For in the given Equation $y^{2}-a x=0$, if we fuppore y and x to become at the fame time $y+j o$ and $x+\dot{x} 0$, (that is, if we fuppofe $\dot{y} 0$ and $\dot{x} 0$ to denote the fynchronal Moments of the Fluents y and x,) then by fubftitution we fhall have $\overline{y+\left.\dot{y} 0\right|^{2}}$, $-a \times x+x_{0}=0$, or in terminis expanfis, $y^{2}+2 y \dot{y} 0+\dot{y}^{2} 0^{2}-a x$ - $a \dot{x} 0=0$. Where expunging $y^{2}-a x=0$, and $\dot{y}^{2} 0^{2}$, and dividing the reft by 0 , it will be $2 y \dot{y}-a \dot{x}=0$ for the firft fluxional Equation. Now in this Equation, if we fuppofe the fynchronal Moments of the Fluents y, \dot{y}, and \dot{x}, to be $\dot{y} 0, y 0$, and $x 0$ refpectively; for thofe Fluents we may fubatitute $y+\dot{y} 0, \dot{y}+y 0$, and $\dot{x}+x 0$ in the laft Equation, and it will become $2 y+2 \dot{y} 0 \times \bar{y}+\overline{j 0}-a \times \bar{x}+x 0$ $=0$, or expanding, $2 y \dot{y}+2 \dot{y} \dot{y}+2 y y_{0}+2 \dot{y y o o}-a \dot{x}-a x 0=0$. Here becaufe $2 y \dot{y}$ - $a x=0$ by the given Equation, and becaufe $2 y \ddot{y} 00$ vanifhes; divide the reft by 0 , and we fhall have $2 \dot{y}^{2}+2 y \ddot{y}$ - $a \ddot{x}=0$ for the fecond fluxional Equation. Again in this Equation, if we fuppofe the Synchronal Moments of the Fluents y, \dot{y}_{3} \ddot{y}_{3} and \ddot{x}, to be $\dot{y} 0, \ddot{y} 0, \dot{y} 0$, and $\dot{x} 0$ refpectively ; for thofe Fluents
we may fubftitute $y+\dot{y} 0, \dot{y}+\dot{y} 0, y+\ddot{y}+$, and $\ddot{x}+\ddot{x}$ in the laft Equation, and it will become $2 \times \dot{y}+\ddot{j} 0{ }^{2}+2 y+2 y_{0} \times \ddot{y}+\ddot{y} 0-$ $a \times \ddot{x}+\ddot{x} 0=0$, or expanding and collecting, $2 \dot{y}^{2}+6 \ddot{y} y 0+2 \ddot{y}^{2} c^{2}$ $+2 y \ddot{y}+2 \dot{y} \dot{y} 0+2 \dot{y y} 0^{2}-a \ddot{x}-a \dot{x} 0=0$. But here becaufe $2 \dot{y}^{2}$ $+2 y y-a x=0$ by the laft Equation; dividing the reit by 0 , and expunging all the Terms in which o will ftill be found, we fhall have $6 \ddot{y}+2 \dot{y} y-\dot{x}-\dot{x}=0$ for the third fluxional Equation. And in like manner for all other orders of Fluxions, and for all other Examples. Q. E. D.

To illuftrate the method of finding fuperior Fluxions by another Example, let us take our Author's Equation x^{5} - $a x^{2}+a x y-y^{3}$ $=0$, in which he has found the finpleft relation of the Fluxions to be $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y+a x \dot{y}-3 \dot{y} y^{2}=0$. Here we have the flowing quantities x, y, \dot{x}, \dot{y}; and by the fame Rules the Fluxion of this Equation, when contracted, will be $3 \ddot{x} x^{2}+6 \dot{x}^{2} x-2 a \ddot{x} x-$ $2 a \dot{x}^{2}+a \ddot{x} y+2 a \dot{x} \dot{y}+a x \ddot{y}-3 y^{2}-6 \dot{y}^{2} y=0$. And in this Equation we have the flowing quantities $x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}$, fo that taking the Fluxions again by the fame Rules, we fhall have the Equation, when contracted, $\quad \ddot{3} \dot{x} x^{2}+18 \ddot{x} \dot{x} x+6 \dot{x^{3}}-2 a \dot{x} x-6 a \ddot{x} \dot{x}+\dot{a} \dot{x} y+$ $3 a \ddot{x} \dot{y}+3 a \dot{x} \dot{y}+a \dot{x}-3 \dot{y} \dot{y}^{2}-1 \ddot{8} \dot{y} \dot{y}-6 \dot{y}=0$. And as in this Equation there are found the flowing quantities $x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}$, \ddot{x}, \dot{y}, we might proceed in like manner to find the relations of the fourth Fluxions belonging to this Equation, and all the following orders of Fluxions.

And here it may not be amifs to obferve, that as the propofed Equation expreffes the conftant elation of the variable quantities x and y; and as the firf fluxional Equation exprefles the conftant relation of the variable (but finite and afignable) quantities \dot{x} and \dot{y}, which denote the comparative Velocity of increafe or decreafe of x and y in the propofed Equation : So the fecond fluxional Equation will exprefs the conftant relation of the variable (but finite and affignable) quantities \ddot{x} and \ddot{y}, which denote the comparative Velocity of the increafe or decreafe of \dot{x} and \dot{y} in the foregoing Equation. And in the third fluxional Equation we have the conftant relation of the variable (but finite and affignable) quantities x and j, which will denote the
comparative Velocity of the increafe or decreafe of \ddot{x} and \ddot{y} in the foregoing Equation. And fo on for ever. Here the Velocity of a Velocity, however uncouth it may found, will be no abfurd Idea when rightly conceived, but on the contrary will be a very rational and intelligible Notion. If there be fuch a thing as Motion any how continually accelerated, that continual Acceleration will be the Velocity of a Velocity ; and as that variation may be continually varied, that is, accelerated or retarded, there will be in nature, or at leaft in the Underftanding, the Velocity of a Velocity of a Velocity. Or in other words, the Notion of fecond, third, and higher Fluxions, muft be admitted as found and genuine. But to proceed:

We may much abbreviate the Equations now derived, by the known Laws of Analyticks. From the given Equation $x^{3}-a x^{2}+$ $a x y-y^{j}=0$ there is found a new Equation, wherein, becaufe of two new Symbols \dot{x} and \dot{y} introduced, we are at liberty to affume another Equation, befides this now found, in order to a juft Determination. For fimplicity-fake we may make \dot{x} Unity, or any other conftant quantity; that is, we may fuppofe x to flow equably, and therefore its Velocity is uniform. Make therefore $\dot{x}=\mathrm{I}$, and the firft fluxional Equation will become $3 x^{2}-2 a x+a y+a x y-$ $3 \dot{y} y^{2}=0$. So in the Equation $3 \ddot{x}: x^{2}+6 \dot{x}^{2} x-2 a \ddot{x} x-2 a \dot{x}^{2}+$ $a x y+2 a \dot{x} \dot{y}+a x y-3 \ddot{y} y^{2}-6 \dot{y}^{2} y=0$ there are four new Symbols introduced, $\dot{x}, \dot{y}, \ddot{x}$, and \ddot{y}, and therefore we may affiume two other congruous Equations, which together with the two now found, will amount to a compleat Determination. Thus if for the fake of fimplicity we make one to be $\dot{x}=\mathrm{I}$, the other will neceffarily be $\ddot{x}=0$; and thefe being fubftituted, will reduce the fecond fluxional Equation to this, $6 x-2 a+2 a \dot{y}+a x \ddot{y}-3 \ddot{y} y^{2}-6 \dot{y}^{2} y=0$. And thus in the next Equation, wherein there are fix new Symbols $\dot{x}, \dot{y}, \ddot{x}, \ddot{y}, \dot{x}, \dot{y}$; befides the three Equations now found, we may take $\dot{x}=\mathrm{I}$, and thence $\ddot{x}=0, \ddot{x}=0$, which will reduce it to $6+3 a \ddot{y}+a x \dot{y}-3 \dot{y} y^{2}-18 \ddot{y} \dot{y} y-6 \dot{y}^{3}=0$. And the like of Equations of fucceeding orders.

But all thefe Reductions and Abbreviations will be beft made as the Equations are derived. Thus the propofed Equation being x^{3} - $a x^{2}+a x y-y^{3}=0$, taking the Fluxions, and at the fame time making $\dot{x}=\mathrm{I}$, (and confequently $\ddot{x}, \dot{x}, \& x c=0$,) we fhall have $3 x_{-}^{2}-2 a x+a y+a x y-3 y y^{2}=0$. And taking the Fluxions
again, it will be $6 x-2 a+2 a \dot{y}+a x \ddot{y}-3 \ddot{y} y^{2}-6 \dot{y}^{2} y=0$. And taking the Fluxions again, it will be $6+3 a \ddot{y}+a x \ddot{y}-3 y y^{\circ}$ $-18 y \dot{y} y-6 \dot{y}^{3}=0$. And taking the Fluxions again, it will be $4 \ddot{a}+a \dot{x} \ddot{y}-3 \ddot{y} y^{2}-24 \dot{y} \dot{y} y-18 \ddot{y}^{2} y-36 \ddot{y} \dot{y}^{2}=0$. And fo on, as far as there is occafion.

But now for the clearer apprehenfion of thefe feveral orders of Fluxions, I thall endeavour to illuftrate them by a Geometrical Figure, adapted to a fimple and a particular cafe. Let us affume the Equation $y^{2}=a x$, or $y=a^{\frac{1}{2}} x^{\frac{1}{2}}$, which will therefore belong to the Parabola $A B C$, whofe Parameter is $A P=a$, $\mathrm{Abfcifs} \mathrm{AD}=x$, and Ordinate $\mathrm{BD}=y$; where AP is a Tangent at the Vertex A. Then taking the Fluxions, we fhall have $\dot{y}=\frac{1}{2} a^{\frac{1}{2}} \cdot \dot{x} x^{-\frac{2}{2}}$. And fuppofing the Parabola to be defcribed by the equable motion of the Ordinate upon the Abfcifs, that equable Velocity may be expounded by the given Line or Parameter a, that is, we may put $\dot{x}=a$. Then it will be $\dot{y}=\left(\frac{1}{2} a^{\frac{3}{2}} x^{-\frac{1}{2}}=\frac{a^{\frac{3}{2}}}{2 x^{\frac{1}{2}}}=\frac{a^{\frac{3}{2}} x^{\frac{1}{2}}}{2 x}=\right) \frac{a y}{2 x}$, which will give us this Conftruction. Make x (AD) : $y(\mathrm{BD}):: \frac{1}{2} a\left(\frac{x}{2} \mathrm{AP}\right): \mathrm{DG}=$ $\frac{a y}{2 x}=\dot{y}$, and the Line DG will therefore reprefent the Fluxion of y or BD . And if this be done every where upon AE , (or if the Ordinate DG be fuppos'd to move upon AE with a parallel motion,) a Curve GH will be conftucted or defcribed, whofe Ordinates will every where expound the Fluxions of the correfponding Ordinates of the $\mathrm{Pa}-$ rabola ABC. This Curve will be one of the Hyperbola's between the Afymptotes AE and AP ; for its Equation is $\dot{y}=\frac{a^{\frac{3}{2}}}{2 x^{\frac{1}{2}}}$,
 or $\dot{y} \dot{y}=\frac{n^{3}}{4 x}$.

Again, from the Equation $\dot{y}=\frac{a y}{2 x}$, or $2 x \dot{y}=a y$, by taking the Fluxions again, and putting $\dot{x}=a$ as before, we fhall have $2 a \dot{y}+2 x \dot{y}=a \dot{y}$, or $-\bar{y}=\frac{a \dot{y}}{2 x x}$; where the negative fign fhew's only, that \ddot{y} is to be confider'd rather as a retardation than an acceleration, or an acceleration the contrary way. Now this will give us the following $\frac{a \dot{y}}{2 x}=\frac{a^{\frac{5}{2}}}{4^{\frac{3}{2}}}$, or $\dddot{y y}=\frac{a^{5}}{16 x^{\frac{3}{3}}}$.

Again, from the Equation - $\ddot{y}=\frac{a j}{2 x}$, or $-2 x \ddot{y}=a \dot{j}$, by taking the Fluxions we fhall have $-2 a \ddot{y}-2 x \dot{y}=\ddot{a} y$, or $-\ddot{y}=\frac{3 a y}{2 x}$, which will give us this Conftruction. Make $x(\mathrm{AD})$: $\ddot{y}(\mathrm{DI}):: \frac{3}{2} a\left(\frac{3}{2} \mathrm{AP}\right): \mathrm{DL}=\ddot{y}$, and the Line DL will therefore reprefent the Fluxion of DI, or of \ddot{y}, the fecond Fluxion of DG, or of \dot{y}, and the third Fluxion of BD, or of y. And if this be done every where upon AE, a Curve LM will be conftructed, whofe Ordinates will always expound the third Fluxions of the correfponding Ordinates of the Parabola ABC. This Curve will be an Hyperbola, and its Equation will be $-\dot{y}=\frac{3 a \ddot{y}}{2 x}=\frac{3 a^{\frac{3}{2}}}{8 x^{\frac{5}{2}}}$, or $\dot{y} y=\frac{9 a^{7}}{6 x^{5}}$. And fo we might proceed to conftruct Curves, the Ordinates of which (in the prefent Example) would expound or reprefent the fourth, fifth, and other orders of Fluxions.

We might likewife proceed in a retrograde order, to find the Curves whofe Ordinates fhall reprefent the Fluents of any of thefe Fluxions, when given. As if we had $\dot{y}=\frac{a^{\frac{3}{2}}}{2 x^{\frac{1}{2}}}=\frac{1}{2} a^{\frac{1}{2}} \dot{x} \cdot x^{-\frac{1}{2}}$, or if the Curve GH were given; by taking the Fluents, (as will be taught in the next Problem,) it would be $y=\left(a^{\frac{1}{2}} x^{\frac{1}{3}}=\frac{a^{\frac{1}{2}} x}{x^{\frac{1}{2}}}=\right)$ $\frac{\dot{2} x \dot{y}}{a}$, which will give us this Conftruction. Make $\frac{1}{2} a\left(\frac{1}{2} \mathrm{AP}\right)$: $x(\mathrm{AD}):: \dot{y}(\mathrm{DG}): \mathrm{DB}=\frac{2 x \dot{y}}{a}$, and the Line DB will reprefent the Fluent of $D G$, or of \dot{y}. And if this be done every where upon the Line AE, a Curve $A B$ will be conftructed, whofe Ordinates will always expound the Fluents of the correfponding Ordinates of the Curve GH. This Curve will be the common Parabola, whofe

Parameter is the Line $\mathrm{AP}=a$. For its Equation is $y=a^{\frac{1}{2}} x^{\frac{1}{2}}$, or $y=a x$.

So if we had the Parabola ABC, we might conceive its Ordinates to reprefent Fluxions, of which the correfponding Ordinates DQ of fome other Curve, fuppofe QR , would reprefent the Fluents. To find which Curve, put y for the Fluent of $y, y^{\prime \prime}$ for the Fluent of $y, \& \mathrm{cc}$. (That is, let, $\& \mathrm{cc}, \underline{y}, y, y, y, y, \dot{y}, \dot{y}, \dot{y}, \& \mathrm{cc}$. be a Series of Terms proceeding both ways indefinitely, of which every fucceeding Term reprefents the Fluxion of the preceding, and vice versä; according to a Notation of our Author's, deliver'd elfewhere.) Then becaufe it is $y=\left(a^{\frac{1}{2}} x^{\frac{2}{2}}=a^{\frac{1}{2}} x^{\frac{1}{2}} \times \frac{\dot{\tilde{x}}}{a} \Rightarrow \frac{\dot{x} \frac{1}{2}}{a^{\frac{1}{2}}}\right.$, taking the Fluents it will be $y^{\prime}=\left(\frac{2 x^{\frac{2}{2}}}{3 a^{\frac{1}{2}}}=\frac{2 a^{\frac{1}{2}} x^{\frac{3}{2}}}{3^{a}}=\right) \frac{2 x y}{3 a}$; which will give us this Conftruction. Make $\frac{3}{2} a\left(\frac{3}{2} \mathrm{AP}\right): x(\mathrm{AD}):: y(\mathrm{BD}): \frac{2 x y}{3 a}=y^{\prime}=\mathrm{DQ}$, and the Line DQ will reprefent the Fluent of $D B$, or of y. And if the fame be done at every point of the Line $A E$, a Curve QR will be form'd, the Ordinates of which will always expound the Fluents of the correfponding Ordinates of the Parabola ABC. This Curve alfo will be a Parabola, but of a higher order, the Equation of which is $y=\frac{2 x^{\frac{3}{2}}}{\left.3 a^{\frac{2}{2}}\right)^{2}}$, or $\begin{aligned} & \prime \prime \\ & y\end{aligned}=\frac{4 x^{3}}{9 a}$.
 ents it will be $y^{\prime \prime}=\left(\frac{4 x^{\frac{x^{2}}{2}}}{15 a^{\frac{3}{2}}}=\frac{2 x^{\frac{3}{2}}}{3 a^{2}} \frac{1}{2 a^{2}} \frac{2 x}{5 a}=\right) \frac{2 x y^{\prime}}{5 a}$, which will give us this Conftruction. Make $\frac{3}{5} a\left(\frac{5}{2} \mathrm{AP}\right): x(\mathrm{AD})::^{\prime} y^{\prime}(\mathrm{DC}): \frac{2 x y}{5^{a}}=y^{\prime \prime}$ $=\mathrm{DS}$, and the Line DS will reprefent the Fluent of DQ, or of ${ }^{\prime} y$. And if the fame be done at every point of the Line AE, a Curve ST will thereby be form'd, the Ordinates of which will expound the Fluents of the correfponding Ordinates of the Curve QR. This Curve will be a Parabola, whofe Equation is $y=\frac{4 x^{\frac{\xi^{\frac{1}{2}}}{2}}}{15 a^{\frac{1}{2}}}$, or $y y=$ $\frac{16 x^{5}}{225^{3} 3}$. And fo we might go on as far as we pleafe.

Laftly, if we conceive DB , the common Ordinate of all thefe Curves, to be any where thus conftructed upon AD , that is, to be thus divided in the points $S, Q, B, G, I, L, \& c$. from whence to AP are drawn $S s, \mathrm{Q} q, \mathrm{~B} b, \mathrm{G} g, \mathrm{I} i, \mathrm{~L} l$, \&c. parallel to AE ; and if this Ordinate be farther conceived to move either backwards or forwards upon AE, with an equable Velocity, (reprefented by $\mathrm{AP}=a=\dot{x}_{\text {, }}$) and as it defcribes thefe Curves, to carry the aforefaid Parallels along with it in its motion: Then the points s, q, b, g, $i, l, 8 c$. will likewife move in fuch a manner, in the Line AP, as that the Velocity of each point will be reprefented by the diftance of the next from the point A. Thus the Velocity of s will be reprefented by $A q$, the Velocity of q by $A b$, of b by $A g$, of g by A, of i by $\mathrm{A} l$, \&xc. Or in other words, A q will be the Fluxion of $A s$; $\mathrm{A} b$ will be the Fluxion of $\mathrm{A} q$, or the fecond Fluxion of $\mathrm{As} ; \mathrm{Ag}$ will be the Fluxion of $A b$, or the fecond Fluxion of $A q$, or the third Fluxion of As; $\mathrm{A} i$ will be the Fluxion of Ag , or the fecond Fluxion of $\mathrm{A} b$, or the third Fluxion of $\mathrm{A} q$, or the fourth Fluxion of $\mathrm{A} s$; and fo on. Now in this inftance the feveral orders of Fluxions, or Velocities, are not only expounded by their Proxies and Reprefentatives, but alfo are themfelves atually exhibited, as far as may be done by Geometrical Figures. And the like obtains wherever elfe we make a beginning; which fufficiently fhews the relative nature of all thefe orders of Fluxions and Fluents, and that they differ from each other by mere relation only, and in the manner of conceiving. And in general, what has been obferved from this Example, may be cafily accommodated to any other cafes whatfoever.

Or thefe different orders of Fluents and Fluxions may be thus explain'd abftractedly and Analytically, without the affiftance of Curvelines, by the following general Example. Let any conftant and known quantity be denoted by a, and let a^{m} be any given Power or Root of the fame. And let x^{m} be the like Power or Root of the variable and indefinite quantity x. Make $a^{m}: x^{m}:: a: y$, or $y=\frac{a x^{m}}{a^{m}}=a^{1-m} x^{m}$. Here y alfo will be an indefinite quantity, which will become known as foon as the value of x is affign'd. Then taking the Fluxions, it will be $\dot{y}=m a^{1-m} \dot{x} x^{m-1}$; and fuppofing x to flow or increafe uniformly, and making its conftant Velocity or Fluxion $\dot{x}=a$, it will be $\dot{y}=m a^{2-m} x^{m-x}$. Here if for $a^{1-m} x^{m}$ we write its value y, it will be $\dot{y}=\frac{m a y}{x}$, that is, x : $m a:: y: \dot{y}$. So that \dot{y} will be alfo a known and affignable $\underset{\text { tity, }}{\text { Quan- }}$
city, whenever x (and therefore y) is affign'd. Then taking the Fluxions again, we hall have $y=m \times \overline{m-1} a^{2-m} \dot{x} x^{m-2}=m \times$ $\overline{m-1} a^{5-m} x^{m-z}$; or for $m a^{2-m} x^{m-r}$ writing its value \dot{y}, it will be $\ddot{y}=\frac{\overline{m-1} a \dot{y}}{x}$, that is, $x: \overline{m-1} a:: \dot{y}: \ddot{y}$. So that \ddot{y} will become a known quantity, when x (and therefore y and y) is affign'd. Then taking the Fluxions again, we hall have $\dot{y}=m \times \overline{m-1} \times$ $\overline{m-2} a^{4-m_{\lambda}}{ }^{m-3}$, or $\dot{y}=\frac{\overline{m-2} a \ddot{y}}{x}$, that is, $x: \overline{m-2} a: \ddot{y}: \ddot{y}$; where alfo \ddot{y} will be known, when x is given. And taking the Fluxions again, we fall have $: \ddot{y}=m \times \overline{m-1} \times \overline{m-2} \times \overline{m-3} a^{5-m} x^{m-4}$ $=\frac{\overline{m-3} a y}{x}$; that is, $x: \overline{m-3} a:: \ddot{y}: \ddot{y}$. So that \ddot{y} will aldo be known, whenever x is given. And from this Induction we may conclude in general, that if the order of Fluxions be denoted by any integer number n, or if n be put for the number of points over the Letter y, it will always be $x: \overline{m-n} a:: \dot{y}: \dot{y}$; or from the Fluxion of any order being given, the Fluxion of the next immediane order may be hence found.

Or we may thus invert the proportion $\overline{m-n} a: \dot{x}:: \dot{n} \dot{y}: \frac{\pi}{\dot{y}}$, and then from the Fluxion given, we Shall find its next immediate Fluent. As if $n=2$, 'is $\overline{m-2} a: x:: \ddot{y}: \ddot{y}$. If $n=\mathrm{r}$, 'is $\overline{m-1} a: x:: \ddot{y}: \dot{y}$. If $n=0$, 'ti $m a: x:: \dot{y}: y$. And observing the fame analogy, if $n=-1$, 'is $\overline{m+1 a}: x:: y$: y; where y is put for the Fluent of y, or for y with a negative point. And here because $y=a^{r-m} x^{m}$, it will be $\overline{m^{2}+1 a}: x:: a^{r-m} x^{m}$: \bar{y}, or $\bar{y}=\frac{a^{1-m} x^{m}+\mathrm{x}}{\overline{m+1 a}}=\frac{x^{m+1}}{m+1 a^{m}}$: which also may thus appear, Because $y=\left(a^{r-m} x^{m}=\frac{a^{x-m_{\dot{x}} x^{m}}}{a} \Rightarrow\right) \frac{\dot{x} x^{m}}{a^{m}}$, taking the Fluents, (fee the next Problem,) it will be $y=\frac{x^{m+x}}{m+1 a^{m}}$. Again, if we make $n=-2$, 'is $\overline{m+2 a}: x:: y^{\prime}: y$, or $y=\frac{x y^{\prime}}{\overline{m+2 a}}=\frac{x^{m+2}}{\overline{m+1} \times \overline{m+2 a^{m+1}}}$. For becaufe
becaufe $y^{\prime}=\frac{x^{m+x}}{m+1 a^{m}} \times \frac{\dot{x}}{a}=\frac{\dot{x} x^{m+1}}{n+1 a^{m+1}}$, taking the Fluents it will be $y^{\prime}=\frac{x^{m+2}}{\overline{n+1} \times \overline{m+2} a^{m+1}}$. Again, if we make $n=-3$, 'tis $\overline{m+3^{a} a}$: $x:: y^{\prime \prime}: y^{\prime \prime \prime}$, or $y^{\prime \prime \prime}=\frac{x_{y}^{\prime \prime}}{\overline{m+3}}=\frac{x^{m+3}}{\overline{m+1} \times \overline{m+2} \times \overline{m+3} a^{m+2}}$. And fo for all other fuperior orders of Fluents.
And this may fuffice in general, to fhew the comparative nature and properties of thefe feveral orders of Fluxions and Fluents, and to teach the operations by which they are produced, or to find their refpective fluxional Equations. As to the ufes they may be apply'd to, when found, that will come more properly to be confider'd in another place.

Sect. III. The Geometrical and Mechanical Elements of Fluxions.

THE foregaing Principles of the Doctrine of Fluxions being chiefly abftracted and Analytical, I fhall here endeavour, after a general manner, to fhew fomething analogous to them in Geometry and Mechanicks; by which they may become, not only the object of the Underftanding, and of the Imagination, (which will only prove their poffible exiftence, , but even of Senfe too, by making them actually to exift in a vifible and fenfible form. For it is now become neceffary to exhibit them all manner of ways, in order to give a fatisfactory proof, that they have indeed any real exiftence at all.

And firft, by way of preparation, it will be convenient to confider uniform and equable motions, as alfo fuch as are alike inequable. Let the right Line $A B$ be defcribed by the equable motion of a point, which is now at E , and will prerently be at G. Alfo let the Line CD, parallel to the former, be de-
 fcribed by the equable motion of a point, "which is in H and K , at the fame times as the former is in E and G. Then will $E G$ and HK be contemporaneous Lines, and therefore will be proportional to
the Velocity of each moving point refpectively. Draw the indefinite Lines EH and GK, meeting in L; then becaufe of like Triz angles ELG and HLK, the Velccities of the points E and H , which were before as, EG and HK, will be now as EL and HL. Let the defcribing points G and K be conceived to move back again, with the fame Velocities, towards A and C , and before they approach to E and H let them be found in g and k, at any fmall diftance from E and H , and draw gk , which will pafs through L ; then ftill their Velocities will be in the ratio of Eg and $\mathrm{H} k$, be thofe Lines ever fo little, that is, in the ratio of EL and HL. Let the moving points g and k continue to move till they coincide with E and H ; in which cafe the decreafing Lines $\mathrm{E} g$ and $\mathrm{H} k$ will pafs through all poffible magnitudes that are lefs and lefs, and will finally become vanifhing Lines. For they muft intirely vanifh at the fame moment, when the points g and k fhall coincide with, E and H. In all which ftates and circumftances they will ftill retain the ratio of EL to HL, with which at laft they will finally vanifh. Let thofe points ftill continue to move, after they have coincided with E and H , and let them be found again at the fame time in γ and x, at any diftance beyond E and $\mathrm{H}_{\text {. }}$ Still the Velocities, which are now as E_{γ} and H_{r}, and may be efteemed negative, will be as EL . and HL; whether thofe Lines $\mathrm{E}_{\boldsymbol{\gamma}}$ and $\mathrm{H} x$ are of any finite magnitude, or are only nafcent Lines; that is, if the Line $\gamma^{x} \mathrm{~L}$, by its angular motion, be but juft beginning to emerge and divaricate from
EHL. And thus it will be when both thefe motions are equable motions, as alfo when they are alike inequable; in both which cafes the common interfection of all the Lines EHL, GKL, gkL, \&ec. will be the fixt point L. But when either or \cdot both thefe motions are fuppos'd to be inequable motions, or to be any how continually accelerated or retarded, thefe Symptoms will be fomething different ; for then the point L, which will ftill be the common interfection of thofe Lines when they firft begin to coincide, or to divaricate, will no longer be a fixt but a moveable point, and an account muft be had of its motion. For this purpole we may have recourfe to the following Lemma.

Let $A B$ be an indefinite and fixt right Line, along, which another indefinite but moveable right Line DE may be conceived to move or roll in fuch a manner, as to have both a progreflive motion, as alfo an angular motion about a moveable Center C. That is, the common interfection C of the two Lines $A B$ and $D E$ may be fuppofed to move with any progreffive motion from A towards B, while at the
fame time the moveable Line DE revolves about the fame point C , with any angular motion. Then as the Angle ACD continually decreafes, and at laft vanifhes when the two Lines ACB and DCE coincide; yet even then the point of interfection C, (as it may be ftill call'd,) will not be loft and annihilated, but will appear again, as foon as the Lines begin to divaricate, or to feparate from each other. That is, if C be the point of interfection before the coincidence, and c the point of interfection after the coincidence, when the Line doe fhall again emerge out of $A B$; there will be fome intermediate point L , in which C and c were united in the fame point, at the moment of coincidence. This point, for diftinction-fake; may be call'd the Node, or the point of no divarication. Now to apply this to inequable Motions:

Let the Line $A B$ be defcribed by the continually accelerated motion of a point, which is now in E, and will be prefently found in: G. Alfo let the Line CD, parallel to the former, be deferibed by the equable motion of a point, which is found in H and K , at the fame times as the other point is in E and G . Then willEGand HK be contemporaneous Lines; and producing EH and GK till they meet in I, thofe contempo-
 rancous Lines will be as EI and HI refpectively. Let the defcribing points G and K be conceived to move back again towards A and C, each with the fame degrees of Velocity, in every point of their motion, as they had before acquired; and let them arrive at the fame time at g and k, at fome fmall diftance from E and H, and draw $g k i$ meeting EH in i. Then $\mathrm{E} g$ and $\mathrm{H} k$, being contemporary Lines alfo, and very little by fuppofition, they will be nearly as the Ve-
locities at g and k, that is, at E and H ; which contemporary Lines will be now as $\mathrm{E} i$ and H . Let the points g and k continue their motion till they coincide with E and H , or let the Line GKI or $g k i$ continue its progreffive and angular motion in this manner, till it coincides with EHL, and let L be the Node, or point of no divarication, as in the foregoing Lemma. Then will the laft ratio of the vanifhing Lines Eg and $\mathrm{H} k$, which is the ratio of the Velo-- cities at E and H , be as EL and HL refpectively.

Hence we have this Corollary. If the point E (in the foregoing figure,) be fuppos'd to move from A towards B, with a Velocity any how accelerated, and at the fame time the point \mathbf{H} moves from C towards D with an equable Velocity, (or inequable, if you pleafe;) thofe Velocities in E and H will be refpectively as the Lines EL and HL , which point L is to be found, by fuppofing the contemporary Lines EG and HK continually to diminifh, and finally to vanifh. Or by fuppofing the moveable indefinite Line GKI to move with a progreffive and angular motion, in fuch manner, as that $E G$ and HK fhall always be contemporary Lines, till at laft GKI fhall coincide with the Line EHL, at which time it will determine the Node L, or the point of no divarication. So that if the Lines AE and CH reprefent two Fluents, any how related, their Velocities of defription at E and H , or their refpective Fluxions, will be in the ratio of EL and HL.

And hence it will follow alfo, that the Locus of the moveable point or Node L, that is, of all the points of no divarication, will be fome Curve-line Ll, to which the Lines EHL and GK l will always be Tangents in L and l. And the nature of this Curve $\mathrm{L} l$ may be determined by the given re-
 lation of the Fluents or Lines AE and CH ; and vice versâ. Or however the relation of its intercepted Tangents EL and HL may be determined in all cafes; that is, the ratio of the Fluxions of the given Fluents.

For illuftration-fake, let us apply this to an Example. Make the Fluents $\mathrm{AE}=y$ and $\mathrm{CH}=x$, and let the relation of thefe be always exprefs'd by this Equation $y=x^{n}$. Make the contemporary Lines $\mathrm{EG}=\mathrm{Y}$ and $\mathrm{HK}=\mathrm{X}$; and becaufe AE and CH are contemporary by fuppofition, we fhall have the whole Lines AG and CK contemporary alfo, and thence the Equation $y+\mathrm{Y}=\overline{x+\mathrm{X}} \mid$. This by our Authror's Binomial Theorem will produce $y+Y=x^{n}+$ $n x^{n-1} \mathrm{X}+n x^{n-\frac{1}{2}} x^{n-2} \mathrm{X}^{2}$, \&c. which (becaufe $y=x^{n}$) will become $\mathrm{Y}=n x^{n-1} \mathrm{X}+n \times \frac{n-1}{2} x^{n-2} \mathrm{X}^{2}$, \& cc. or in an Analogy, X : $\mathrm{Y}:: \mathrm{I}: n \mathrm{x}^{n-1}+n \times \frac{n-1}{2} x^{n-2} \mathrm{X}$, \&cc. which will be the general relation of the contemporary Lines or Increments EG and HK. Now let us fuppofe the indefinite Line GKI, which limits thefe contemporary Lines, to return back by a progreflive and angular motion, fo as always to intercept contemporary Lines EG and HK, and finally to coincide with EHL, and by that means to determine the Node L; that is, we may fuppofe $\mathrm{EG}=\mathrm{Y}$ and $\mathrm{HK}=\mathrm{X}$, to diminifh in inifinitum, and to become vanifhing Lines, in which cafe we fhall have $\mathrm{X}: \mathrm{Y}:: \mathrm{I}: n x^{n-1}$. But then it will be likewife X : Y :: HK : EG :: HL : EL :: $\dot{x}: \dot{y}$, or $1: n x^{n-1}:: \dot{x}: \dot{y}$, or $\dot{j}=n \dot{x} x^{n-1}$.
And hence we may have an expedient for exhibiting Fluxions and Fluents Geometrically and Mechanically, in all circumftances, fo as to make them the objects of Senfe and ocular Demonftration. Thus in the laft figure, let the two parallel lines AB and CD be defcribed by the motion of two points. E and H , of which E moves any how inequably, and (if you pleafe) H may be fuppos'd to move equably and uniformly ; and let the points H and K correfpond to E and G. Alfo let the relation of the Fluents $\mathrm{AE}=y$ and $\mathrm{CH}=x$ be defined by any Equation whatever. Suppofe now the defrribing points E and H to carry along with them the indefinite Line EHL, in all their motion, by which means the point or Node L will defrribe fome Curve L , to which EL will always be a Tangent in L. Or fuppofe EHL to be the Edge of a Ruler, of an indefinite length, which moves with a progreffive and angular motion thus combined together ; the moveable point or Node L in this Line, which will have the leaft angular motion, and which is always the point of no divarication, will defrribe the Curve, and the Line or Edge itfelf will be a Tangent to it in L. Then will the fegments EL and HL be proportional to the Velocity of the points E and H refpectively ; or will exhibit the ratio of the Fluxions \dot{y} and \dot{x}, belonging to the Fluents $\mathrm{AE}=y$ and $\mathrm{CF}=x$.

Or if we fuppofe the Curve $L l$ to be given, or already confructed, we may conceive the indefinite Line EHIL to revolve or roll about it, and by continually applying itfelf to it, as a Tangent, to move from the fituation EHIL to GK/I. Then will AE and CH be the Fluents, the fenfible velocities of the defcribing points E and H will be their Fluxions, and the intercepted Tangents EL and HL will be the rectilinear meafures of thofe Fluxions or Velocities. Or it may be reprefented thus: If $\mathrm{L} l$ be any rigid obftacle in form of a Curve, about which a flexible Line, or Thread, is conceived to be wound, part of which is ftretch'd out into a right Line LE, which will therefore touch the Curve in L ; if the Thread be conceived to be farther wound about the Curve, till it comes into the fituation L/KG; by this motion it will exhibit, even to the Eye, the fame increafing Fluents as before, their Velocities of increafe, or their Fluxions, as alfo the Tangents or rectilinear reprefentatives of thofe Fluxions. And the fame may be done by unwinding the Thread, in the manner of an Evolute. Or inftead of the Thread we may make ufe of a Ruler, by applying its Edge continually to the curved Obftacle Ll , and making it any how revolve about the moveable point of Contact L or l. In all which manners the Fluents, Fluxions, and their rectilinear meafures, will be fenfibly and mechanically exhibited, and therefore they muft be allowed to have a place in rerum naturâ. And if they are in nature, even tho' they were but barely pofiible and conceiveable, much more if they are fenfible and vifible, it is the province of the Mathematicks, by fome method or other, to inveftigate and determine their properties and pro. portions.

Or as by one Thread EHL, perpetually winding about the curved obftacle L/, of a due figure, we fhall fee the Fluents AE and CH continually to increafe or decreafe, at any rate affign'd, by the motion of the Thread EHL either backwards or forwards; and as we Thall thereby fee the comparative Velocities of the points E and H , that is, the Fluxions of the Fluents AE and CH , and alfo the Lines EL and HL, whofe variable ratio is always the rectilinear meafure of thofe Fluxions: So by the help of another Thread GK/L, winding about the obftacle in its part $l \mathrm{~L}$, and then ftretching out into a right Line or Tangent $/ \mathbb{K G}$, and made to move backwards or forwards, as before; if the firft Thread be at reft in any given fituation EHL, we may fee the fecond Thread defcribe the contempoporary Lines or Increments EG and HK, by which the Fluents AE and CH are continually increafed ; and if GKl is made to approacls
proach towards EHL, we may fee thofe contemporary Lines continually to diminith, and their ratio continually approaching towards the ratio of EL to HL; and continuing the motion, we may prefently fee thofe two Lines actually to coincide, or to unite as one Line, and then we may fee the contemporary Lines actually to vanifh at the fame time, and their ultimate ratio actually to become that of EL to HL. And if the motion be ftill continued, we fhall fee the Line GK l to emerge again out of EHL, and begin to defcribe other contemporary Lines, whofe nafcent proportion will be that of EL to HL. And fo we may go on till the Fluents are exhaufted. All thefe particulars may be thus eafily made the objects of fight, or of Ocular Demonftration.

This may ftill be added, that as we have here exhibited and reprefented firft Fluxions geometrically and mechanically, we may do the fame thing, mutatis mutandis, by any higher orders of Fluxions. Thus if we conceive a fecond figure, in which the Fluential Lines fhall increafe after the rate of the ratio of the intercepted Tangents (or the Fluxions) of the firft figure ; then its intercepted Tangents will expound the ratio of the fecond Fluxions of the Fluents in the firft figure. Alfo if we conceive a third figure, in which the Fluential Lines fhall increafe after the rate of the intercepted Tangents of the fecond figure; then its intercepted Tangents will expound the third Fluxions of the Fluents in the firft figure. And fo on as far as we pleafe. This is a neceffary confequence from the relative nature of thefe feveral orders of Fluxions, which has been fhewn before.

And farther to fhew the univerfality of this Speculation, and how well it is accommodated to explain and reprefent all the circumftances of Fluxions and Fluents; we may here take notice, that it may be alfo adapted to thofe cafes, in which there are more than two Fluents, which have a mutual relation to each other, exprefs'd by one or more Equations. For we need but introduce a third parallel Line, and fuppofe it to be defcribed by a third point any how moving, and that any two of thefe defribing points carry an indefinite Line along with them, which by revolving as a Tangent, defcribes the Curve whofe Tangents every where determine the Fluxions. As alfo that any other two of thofe three points are connected by another indefinite Line, which by revolving in like manner defcribes another fuch Curve. And fo there may be four or more parallel Lines. All but one of thefe Curves may be affumed at pleafure, when they are not given by the ftate of the Queftion. Or Analytically,

Tà yomà yaw'ess rix yamà you"us.
tically, fo many Equations may be affumed, except one, (if not given by the Problem,) as is the number of the Fluents concern'd.

But laftly, I believe it may not be difficult to give a pretty good notion of Fluents and Fluxions, even to fuch Perfons as are not much verfed in Mathomatical Speculations, if they are willing to be inform'd, and have but a tolerable readinefs of apprchenfion. This I hall here attempt to perform, in a familiar way, by the inftance of a Fowler, who is aiming to thoot two Birds at once, as is reprefented in the Frontifpiece. Let us fuppofe the right Line $A B$ to be parallel to the Horizon, or level with the Ground, in which a Bird is now flying at G, which was lately at F, and a little before at E. And let this Bird be conceived to fly, not with an equable or uniform fwiftnefs, but with a fwiftnefs that always increafes, (or with a Velocity that is continually accelerated,) according to fome known rate. Let there alfo be another right Line CD, parallel to the former, at the fame or any other convenient diftance from the Ground, in which another Bird is now flying at K , which was lately at I , and a little before at H ; juft at the fame points of time as the firft Bird was at G, F, E, refpectively. But to fix our Ideas, and to make our Conceptions the more fimple and eafy, let us imagine this fecond Bird to fly equably, or always to deferibe equal parts of the Line CD in equal times. Then may the equable Velocity of this Bird be ufed as a known meafure, or ftandard, to which we may always compare the inequable Velocity of the firft Bird. Let us now fuppofe the right Line EH to be drawn, and continued to the point L, fo that the proportion (or ratio) of the two Lines EL and HL may be the fame as that of the Velocities of the two Birds, when they were at E and H refpectively. And let us farther fuppofe, that the Eye of a Fowler was at the fame time at the point L , and that he directed his Gun, or Fowling-piece, according to the right Line LHE, in hopes to fhoot both the Birds at once. But not thinking himfelf then to be fufficiently near, he forbears to difcharge his Piece, but fill pointing it at the two Birds, he continually advances towards them according to the direction of his Piece, till his Eye is prefently at M, and the Birds at the fame time in F and I, in the fame right Line FIM. And not being yet near enough, we may fuppofe him to advance farther in the fame manner, his Piece being always directed or level'd at the two Birds, while he himfelf walks forward according to the direction of his Piece, till his Eye is now at N, and the Birds in the fame right Line with his Eye, at K and G. The Path of his Eye, deficribed by this
double motion, (or compounded of a progreflive and angular motion,) will be fome Curve-line LMN, in the fame Plain as the reft of the figure, which will have this property, that the proportion of the diftances of his Eye from each Bird, will be the fame every where as that of their refpective Velocities. That is, when his Eye was at L , and the Birds at E and H , their Velocities were then as EL and HL, by the Conftruction. And when his Eye was at M, and the Birds at F and I , their Velocities were in the fame proportion as the Lines FM and IM, by the nature of the Curve LMN. And when his Eye is at N, and the Birds at G and K, their Velocities are in the proportion of GN to KN, by the nature of the fame Curve. And fo univerfally, of all other fituations. So that the Ratio of thofe two Lines will always be the fenfible meafure of the ratio of thofe two fenfible Velocities. Now if thefe Velocities, or the fwiftneffes of the flight of the two Birds in this inftance, are call'd Fluxions; then the Lines deferibed by the Birds in the fame time, may be calld their contemporaneous Fluents; and all inftances whatever of Fluents and Fluxions, may be reduced to this Example, and may be illuftrated by it.

And thus I would endeavour to give fome notion of Fluents and Fluxions, to Perfons not much converfant in the Mathematicks; but füch as had acquired fome fkill in thefe Sciences, I would thus proceed farther to inftruct, and to apply what has been now deliver'd. The contemporaneous Fluents being $\mathrm{EF}=y$, and $\mathrm{HI}=x$, and their rate of flowing or increafing being fuppos'd to be given or known ; their relation may always be exprefs'd by an Equation, which will be compos'd of the variable quantities x and y, together with any known quantities. And that Equation will have this property, becaufe of thofe variable quantities, that as FG and IK, EG and HK, and infinite others, are alfo contemporaneous Fluents; it will indifferently exhibit the relation of thofe Lines alfo, as well as of EF and HI ; or they may be fubftituted in the Equation, inftead of x and y. And hence we may derive a Method for determining the Velocities themfelves, or for finding Lines proportional to them. For making $\mathrm{FG}=\mathrm{Y}$, and $\mathrm{IK}=\mathrm{X}$; in the given Equation I may fubftitute $y+Y$ inftead of y, and $x+X$ inftead of x, by which I fhall obtain an Equation, which in all circumftances will exhibit the relation of thofeQuantities or Increments. Now it may be plainly perceived, that if the Line MIF is conceived continually to approach nearer and nearer to the Line NKG, (as juft now, in the inftance of the Fowler,) till it finally coincides with it ; the Lines $\mathrm{FG}=\mathrm{Y}$,
and $\mathrm{IK}=\mathrm{X}$, will continually decreafe, and by decreafing will approach nearer and nearer to the Ratio of the Velocities at G and K , and will finally vanim at the fame time, and in the proportion of thofe Velocities, that is, in the Ratio of GN to KN. Confequently in the Equation now form'd, if we fuppofe Y and X to decreafe continually, and at laft to vanifh, that we may obtain their ultimate Ratio ; we fhall thereby obtain the Ratio of GN to KN. But when Y and X vanifh, or when the point F coincides with G, and I with H , then it will be $\mathrm{EG}=y$, and $\mathrm{HK}=x$; fo that we fhall have $\dot{y}: \dot{x}:: \mathrm{GM}: \mathrm{KN}$. And hence we fhall obtain a Fluxional Equation, which will always exhibit the relation of the Fluxions, or Velocities, belonging to the given Algebraical or Fluential Equation.

Thus, for Example, if $\mathrm{EF}=y$, and $\mathrm{HI}=x$, and the indefinite Lines y and x are fuppofed to increafe at fuch a rate, as that their relation may always be exprefs'd by this Equation $x^{3}-a \hat{w}^{2}+a x y$ $-y^{3}=0$; then making $F G=Y$, and $I K=X$, by fubftituting $y+\mathrm{Y}$ for y, and $x+\mathrm{X}$ for x, and reducing the Equation that will arife, (fee before, pag. 255.) we fhall have $3 x^{2} \mathrm{X}+3 x \mathrm{X}^{2}+\mathrm{X}^{3}-$ $2 a x \mathrm{X}-a \mathrm{X}^{2}+a x \mathrm{Y}+a \mathrm{X} y+a \mathrm{XY}-3 y^{2} \mathrm{Y}-3 y \mathrm{Y}^{2}-\mathrm{Y}^{3}=0$, which may be thus exprefs'd in an Analogy, $\mathrm{Y}: \mathrm{X}:: 3 x^{2}-2 a x$ $+a y+3 x \mathrm{X}+\mathrm{X}^{2}-a \mathrm{X}: 3 y^{2}-a x-a \mathrm{X}+3 y \mathrm{Y}+\mathrm{Y}^{2}$. This Analogy, when Y and X are vanifhing quantities, or their ultimate Ratio, will become $\mathrm{Y}: \mathrm{X}:: 3 x^{2}-2 a x+a y: 3 y^{2}-a x$. And becaufe it is then $\mathrm{Y}: \mathrm{X}:: \mathrm{GN}: \mathrm{KN}:: \dot{y}: \dot{x}$, it will be $\dot{y}: \dot{x}::$ $3 x^{2}-2 a x+a y: 3 y^{2}-a x$. Which gives the proportion of the Fluxions. And the like in all other cafes. Q.E.I.

We might alfo lay a foundation for thefe Speculations in the following manner. Let ABCDEF, \&c. be the Periphery of a Polygon, or any part of it, and let the Sides AB, BC, CD, DE, \&c. be of any magnitude whatever. In the fame Plane, and at any diftance, draw the two parallel Lines $\beta 3$, and $b f$, to which continue the right Lines
 $\mathrm{AB} b \beta, \mathrm{BC} c y, \mathrm{CD} d s$, DEer, \&c. meeting the parallels as in the figure. Now if we fup-
pofe two moving points, or bodies, to be at β and b, and to move in the fame time to γ and c, with any equable Velocities; thofe Velocities will be to each other as $\beta \gamma$ and $b c$, that is, becaufe of the parallels, as βB and $b \mathrm{~B}$. Let them fet out again from γ and c, and arrive at the fame time at δ and d, with any equable Velocities; thofe Velocities will be as γ^{δ} and $c d$, that is, as ${ }_{2} \mathrm{C}$ and $c \mathrm{C}$. Let them depart again from δ and d, and arrive in the fame time at ε and e, with any equable Velocities ; thofe Velocities will be as $\delta \varepsilon$ and $d e$, that is, as $\delta \mathrm{D}$ and $d \mathrm{D}$. And it will be the fame thing every where, how many foever, and how fmall foever, the Sides of the Polygon may be. Let their number be increafed, and their magnitude be diminifh'd in infinitum, and then the Periphery of the Polygon will continually approach towards a Curve-line, to which the Lines $\mathrm{AB} b \beta, \mathrm{BC} c \gamma, \mathrm{CD} d \delta, \& c$. will become Tangents; as alfo the Motions may be conceived to degenerate into fuch as are accelerated or retarded continually. Then in any two points, fuppofe δ and d, where the defcribing points are found at the fame time, their Velocities (or Fluxions) will be as the Segments of the refpective Tangents $\delta \mathrm{D}$ and $d \mathrm{D}$; and the Lines $\beta \delta$ and $b d$, intercepted by any two Tangents δD and βB, will be the contemporaneous Lines, or Fluents. Now from the nature of the Curve being given, or from the property of its Tangents, the contemporaneous Lines may be found, or the relation of the Fluents. And vice vers $\hat{\text { a }}$, from the Rate of flowing being given, the correfponding Curve may be found.

ANNOTATIONS on Prob. 2.

O R,
The Relation of the Fluxions being given, to find the Relation of the Fluents.

Sect. I. A particular Solution; with a preparation for the general Solution, by which it is diftributed into three Cafes.

1, 2. cond fundamental Problem, borrow'd from the Science of Rational Mechanicks: Which is, from the Velocities of the Motion at all times given, to find the quantities of the Spaces defcribed; or to find the Fluents from the given Fluxions. In difcuffing which important Problem, there will be occafion to expatiate fomething more at large. And firft it may not be amiís to take notice, that in the Science of Computation all the Operations are of two kinds, either Compolitive or Refolutative. The Compofitive or Synthetic Operations proceed neceffarily and directly, in computing their feveral quefita, and not tentatively or by way of tryal. Such are Addition, Muliplication, Raifing of Powers, and taking of Fluxions. But the Refolutative or Analytical Operations, as Subtraction, Divifion, Extraction of Roots, and finding of Fluents, are forced to proceed indirectly and tentatively, by long deductions, to arrive at their feveral quajita; and fuppofe or require the contrary Synthetic Operations, to prove and confirm every itep of the Procefs. The Compofitive Operations, always when the data are finite and terminated, and often when they are interminate
or infinite, will produce finite conclufions; whereas very often in the Refolutative Operations, tho' the data are in finite Terms, yet the quefita cannot be obtain'd without an infinite Series of Terms. Of this we fhall fee frequent Inftances in the fubfequent Operation, of returning to the Fluents from the Fluxions given.

The Author's particular Solution of this Problem extends to fuch cafes only, wherein the Fluxional Equation propofed either has been, or at leaft might have been, derived from fome finite Algebraical Equation, which is now required. Here all the neceffary Terms being prefent, and no more than what are neceffary, it will not be difficult, by a Procefs juft contrary to the former, to return back again to the original Equation. But it will moft commonly happen, either if we affume a Fluxional Equation at pleafure, or if we arrive at one as the refult of fome Calculation, that fuch an Equation is to be refolved, as could not be derived from any previous finite Algebraical Equation, but will have Terms either redundant or deficient; and confequently the Algebraic Equation required, or its Root, muft be had by Approximation only, or by an infinite Series. In all which cafes we muft have recourfe to the general Solution of this Problem, which we fhall find afterwards.

The Precepts for this particular Solution are thefe. (I.) All fuch Terms of the given Equation as are multiply'd (fuppofe) by \dot{x}, muft be difpofed according to the Powers of x, or muft be made a Number belonging to the Arithmetical Scale whofe Root is x. (2.) Then they muft be divided by \dot{x}, and multiply'd by x; or \dot{x} muft be changed into x, by expunging the point. (3.) And laftly, the Terms muft be feverally divided by the Progreffion of the Indices of the Powers of x, or by fome other Arithmetical Progreffion, as need flall require. And the fame things muft be repeated for every one of the flowing quantities in the given Equation.

Thus in the Equation $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y-3 \dot{y} y^{2}+a \dot{y} x=0$, the Terms $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y$ by expunging the points become $3^{x^{3}}-2 a x^{2}+a x y$, which divided by the Progreffion of the Indices $3,2,1$, refpectively, will give $x^{3}-a x^{2}+a x y$. Alfo the Terms $-3 y y^{2} *+a j x$ by expunging the points become - $3 y^{3} *+a y x$, which divided by the Progreffion of the Indices 3, 2, 1, refpectively, will give $-y^{3} *+a y x$. The aggregate of thefe, neglecting the redundant Term $a y x$, is $x^{3}-a x^{2}+a x y-y^{3}=0$, the Equation required. Where it muft be noted, that every Term, which occurs more than once, muft be accounted a redundant Term.

So if the propofed Equation were $\overline{m+3} x x^{3}-\overline{m+2} a y x x^{2}+$ $\overline{m+1} a y^{2} \dot{x} x-m y^{4} \dot{x}-\overline{n+3} x y y^{3}+\overline{n+1} a x^{2} y y+n x^{4} \dot{y}-n a x^{3} \dot{y}$ $=0$, whatever values the general Numbers m and n may acquire; if thofe Terms in which \dot{x} is found are reduced to the Scale whofe Root is x, they will fand thus: $\overline{m+3} y x^{5}-\overline{m+2} a y x^{2}+$ $\overline{m+1} a y^{2} \dot{x} x-m y^{4} \dot{x}$; or expunging the points they will become $\overline{m+3} y x^{4}-\overline{m+2 a y} x^{3}+\overline{m+1} a y^{2} x^{2}-m y^{4} x$. Thefe being divided refpectively by the Arithmetical Progreflion $m+3, m+2$, $m+1, m$, will give the Terms $y x^{4}-a y x^{3}+a y^{2} x^{2}-y^{4} x$. Alfo the Terms in which \dot{y} is found; being reduced to the Scale whofe Root is y, will ftand thus: $-\overline{n+3} x \dot{y} y^{3} *+\overline{n+1} a x^{2} y y+n x^{4} y$; or expunging the points they will become $-\overline{n+3} x y^{4} *+\overline{n+1} a x^{2} y^{2}$ $+n x^{4} y$. Thefe being divided refpectively by the Arithmetical Pro--nax y^{3}
greffion $\overline{n+3}, \overline{n+2}, \overline{n+1}, n$, will give the Terms $-x y^{4}+$ $a x^{2} y^{2}+x^{4} y-a x^{3} y$. But thefe Terms, being the fame as the former, mult all be confider'd as redundant, and therefore are to be rejected.
 Equation $x^{3}-a x^{2}+a y x-y^{3}=0$ will arife as before.

Thus if we had this Fluxional Equation may $x^{-1}-\overline{m+2} \times x$ $-n x^{2} y^{j} y^{-3}+\overline{n+1} a \dot{y}=0$, to find the Fluential Equation to which it belongs; the Terms mayx $x^{-1} *-\overline{m+2} \dot{x} x$, by expunging the points, and dividing by the Terms of the Progreffion $m, m+1, m+2$, will give the Terms $a y-x^{2}$. Alfo the Terms - $n x^{2} \dot{y} y^{-1}+\overline{n+1} a \dot{y}$, by expunging the points, and dividing by $n, n+1$, will give the Terms - $x^{2}+a y$. Now as thefe are the fame as the former, they are to be efteem'd as redundant, and the Equation required will be $a y-x^{2}=0$. And when the given Fluxional Equation is a general one, and adapted to all the forms of the Fluential Equation, as is the care of the two laft Examples; then all the Terms arifing from the fecond Operation will be always redundant, fo that it will be fufficient to make only one Opcration.

Thus if the given Equation were $4 y^{23}+z^{3} \dot{y} y^{-1}+2 y x^{\prime} x-3 \dot{z} z^{2}$ $+6 y \dot{z} x-2 c y \dot{z}=0$, in which there are found three flowing quantities; the only Term in which x is found is $2 y x x$, in which expunging the point, and then dividing by the Index 2 , it will become $y x^{2}$. Then the Terms in which \dot{y} is found are $4 \dot{y} y^{2}+z^{3} \dot{y} y^{-5}$, which expunging the points become $4 y^{3} * *+z^{3}$, and dividing
by the Progreffion 2, 1, $0,-1$, give the Terms $2 y^{3}-z^{*}$. Laftly the Terms in which \dot{z} is found are $-3 \dot{z} \dot{z}^{2}+6 y \dot{z} z-2 c y \dot{z}$, which expunging the points become - $3 z^{3}+6 y^{\prime} z^{2}-2 c y z$, and dividing by the Progreflion 3, 2, 1, give the Terms - $z^{3}+3 y z^{2}-2 c y z$. Now if we collect thefe Terms, and omit the redundant Term - z^{3}, we fhall have $y x^{2}+2 y^{3}-z^{3}+3 y z^{2}-2 c y z=0$ for the Equation required.

3, 4. But thefe deductions are not to be too much rely'd upon, till they are verify'd by a proof; and we have here a fure method of proof, whether we have proceeded rightly or not, in returning from the relation of the Fluxions to the relation of the Fluents. For every refolutative Operation hould be proved by its contrary compofitive Operation. So if the Fluxional Equation $\dot{x} x$ - $\dot{x} y-x \dot{y}+$ $a y=0$ were given, to return to the Equation involving the Fluents; by the foregoing Rule we fhall firt have the Terms $\dot{x} x-\dot{x} y$, which by expunging the points will become $x^{2}-x y$, and dividing by the Progreffion 2, 1 , will give the Terms $\frac{1}{2} x^{2}-x y$. Alfo the Terms, or rather Term, $-x \dot{y}+a \dot{y}$, by expunging the points will become $-x y$. $+a y$, which are only to be divided by Unity. So that leaving out the redundant Term - $x y$, we Chall have the Fluential Equation $\frac{x}{2} x^{2}-x y$ $+a y=0$. Now if we take the Fluxions of this Equation, we fhall find by the foregoing Problem $x \dot{x}-\dot{x} y-x \dot{y}+a \dot{y}=0$, which being the fame as the Equation given, we are to conclude our work is true. But if either of the Fluxional Equations $x \dot{x}-\dot{x} y+a \dot{y}=0$, or $x \dot{x}-x \dot{y}+a \dot{y}=0$ had been propofed, tho' by purfuing the foregoing method we fhould arrive at the Equation $\frac{1}{2} x^{2}-x y+a y$ $=0$, for the relation of the Fluents; yet as this conclufion would not fand the teft of this proof, we muft reject it as erroneous, and have recourfe to the following general Method; which will give the value of y in cither of thofe Equations by an infinite Series, and therefore for ufe and practice will be the moft commodious Solution.
5. As Velocities can be compared only with Velocities, and all other quantities with others of the fame Species only; therefore in every Term of an Equation, the Fluxions muft always afcend to the fame number of Dimenfions, that the homogeneity may not be deftroy'd. Whenever it happens otherwife, 'tis becaufe fome Fluxion, taken for Unity, is there underftood, and therefore muft be fupply'd when occafion requires. The Equation $\dot{x} \dot{z}+\dot{x} \dot{y} \dot{x}-a \dot{z}^{2} x^{2}=0$, by making $\dot{z}=\mathrm{I}$, may become $\dot{x}+\dot{x} \dot{x}-a x^{2}=0$, and likewife pice versâ. And as this Equation virtually involves three variable quantities,
quantities, it will require another Equation, either Fluential or Fluxional, for a compleat determination, as has been already obferved. So as the Equation $\dot{y} x=\dot{x} y y$, by putting $\dot{x}=\mathrm{I}$ becomes $j x=y y$; in like manner this Equation requires and fuppofes the other.
$6,7,8,9,10$, ir. Here we are taught fome ufeful Reductions, in order to prepare the Equation for Solution. As when the Equation contains only two flowing Quantities with their Fluxions, the ratio of the Fluxions may always be reduced to fimple Algebraic Terms. The Antecedent of the Ratio, or its Fluent, will be the quantity to be extracted; and the Confequent, for the greater fimplicity, may be made Unity. Thus the Equation $2 \dot{x}+2 x \dot{x}-y \dot{x}-\dot{y}=0$ is reduced to this, $\frac{y}{x}=2+2 x-y$, or making $\dot{x}=\mathrm{I}$, 'tis $\dot{y}=2$ $+2 x-y$. So the Equation $\dot{y} a-\dot{y} x-\dot{x} a+\dot{x} x-\dot{x} y=0$, making $\dot{x}=\mathrm{I}$, will become $\dot{y}=\left(\frac{a-x+y}{a-x}=\mathrm{I}+\frac{y}{a-x}=\right) \mathrm{I}+\frac{y}{a}$ $+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a^{4}}$, \&cc. by Divifion. But we may apply the particular Solution to this Example, by which we fhall have $\frac{1}{2} x^{2}-x y$ $-a x+a y=0$, and thence $y=\frac{a x-\frac{1}{2} x^{2}}{a-x}$. Thus the Equation $\dot{y} \dot{y}=\dot{x} \dot{y}+\dot{x} \dot{x} x x x$, making $\dot{x}=1$, becomes $\dot{y} \dot{y}=\dot{y}+x x$, and extracting the fquare-root, 'tis $\dot{y}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+x x}=\frac{1}{2} \pm$ the Series $\frac{2}{2}+x^{2}-x^{4}+2 x^{6}-5 x^{8}+14 x^{10}, \& c$. that is, either $\dot{y}=\mathrm{I}+$ $x^{2}-x^{4}+2 x^{6}-5 x^{8}+14 x^{10}$, \&c. or $\dot{y}=-x^{2}+x^{4}-2 x^{6}$ $+5 x^{8}-14 x^{\mathrm{r}}$, \&c. Again, the Equation $\dot{y}^{3}+a x \dot{x}^{2} \dot{y}+a^{2} \dot{x}^{2} \dot{y}-$ $x^{3} \dot{x}^{3}-2 \dot{x}^{3} a^{3}=0$, putting $\dot{x}=1$, becomes $\dot{y}^{3}+a x \dot{y}+a^{2} \dot{y}-x^{3}$ $-2 a^{3}=0$. Now an affected Cubic Equation of this form has been refolved before, (pag. 12.) by which we thall have $\dot{y}=a-\frac{1}{4} x+$ $\frac{x x}{64^{a}}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{163^{3} 4^{3}}, \& c$.
12. For the fake of perfpicuity, and to fix the Imagination, our Author here introduces a diftinction of Fluents and Fluxions into Relate and Correlate. The Correlate is that flowing Quantity which he fuppofes to flow equably, which is given, or may be affumed, at any point of time, as the known meafure or ftandard, to which the Relate Quantity may be always compared. It may therefore very properly denote Time; and its Velocity or Fluxion, being an uniform and conftant quantity, may be made the Fluxional Unit, or the known meafure of the Fluxion (or of the rate of flowing) of the Relate Quantity. The Relate Quantity, (or Quantities if leve-
ral are concern'd,) is that which is fuppos'd to flow inequably, with: any degrees of acceleration or retardation; and ts inequability may be meafured, or reduced as it were to equability, by conftantly comparing it with its correfponding Correlate or equable Quantity. This therefore is the Quantity to be found by the Problem, or whofe Root is to be extracted from the given Equation. And it may be conceived as a Space defrribed by the inequable Velocity of a Body or Point in motion, while the equable Quantity, or the Correlate, reprefents or meafures the time of defcription. This may be illuftrated by our common Mathematical Tables, of Logarithms, Sines, Tangents, Secants, 8ic. In the Table of Logarithms, for infance, the Numbers are the Correlate Quantity, as proceeding equably, or by equal differences, while their Logarithms, as a Relate Quantity, proceed inequably and by unequal differences. And this refemblance would more nearly obtain, if we fhould fuppofe infinite other Numbers and their Logatithms to be interpolated, (if that infinite Number be every where the fame, fo as that in a manner they may become continuous. So the Arches or Angles may be confider'd as. the Correlate Quantity, becaufe they proceed by equal differences, while the Sines, Tangents, Secants, \&cc. are as fo many Relate Quantities, whofe rate of increafe is exhibited by the Tables.

13, 14, 15, 16, 17. This Diftribution of Equations into Orders, or Claffes, according to the number of the flowing Quantities and their Fluxions, tho' it be not of abfolute neceflity for the Solution, may yet ferve to make it more expedite and methodical, and may fupply us with convenient places to reit at.

Sect. II. Solution of the firft Cafe of Equations.

 $18,19,20,21,22,23$. HE firft Cafe of Equations is, when its place, can always te found in Terms compofed of the Powers of x, and known Quantities or Numbers. Thefe Terms are to be multiply'd by x, and to be divided by the Index of x in each Term, which will then exhibit the Value of y. Thus in the Equation $\dot{y}^{2}=\dot{x} \dot{y}$ $+\dot{x}^{2} x^{2}$, it has been found that $\frac{y}{x}=1+x^{2}-x^{4}+2 x^{6}-5 x^{8}+$ $14 x^{10}$, \&cc. Therefore $\frac{i x}{x}=x+x^{3}-x^{3}+2 x^{7}-5 x^{8}+14 x^{18}$, \&cc. and confequently $y=x+\frac{1}{3} x^{3}-\frac{1}{5} x^{5}+\frac{2}{7} x^{7}-\frac{5}{9} x^{9}+\frac{1}{1} \frac{4}{5} x^{13}$, \&c. as may ealily be proved by the direct Method.But this, and the like Equations, may be refolved more readily by a Method form'd in imitation of fome of the foregoing Analyfes, after this manner. In the given Equation make $\dot{x}=1$; then it will be $\dot{y}^{2}=\dot{y}+x^{2}$, which is thus refolved:

$$
\left.\begin{array}{r}
\dot{y} \\
-y^{2}
\end{array}\right\}=-x^{2}+x^{4}-2 x^{6}+5 x^{9}, \& \varepsilon c .
$$

Make - x^{2} the firf Term of \dot{y}; then will $-x^{4}$ be the firf Term of $-\dot{y}^{2}$, which is to be put with a contrary Sign for the fecond Term of \dot{y}. Then by fquaring, $+2 x^{6}$ will be the fecond Term of 一 \dot{y}^{2}, and $-2 x^{6}$ will be the third Term of \dot{y}. Therefore - $5 x^{8}$ will be the third Term of $-\dot{y}^{2}$, and $+5 x^{8}$ will be the fourth Term of \dot{y}; and fo on. Therefore taking the Fluents, $y=$ $-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{2}{9} x^{7}+\frac{5}{9} x^{9}$, \&c. which will be one Root of the Equation. And if we fubtract this from x, we fhall have $y=x+$ $\frac{1}{3} x^{3}-\frac{1}{5} x^{5}+\frac{2}{9} x^{7}-\frac{5}{9} x^{9}, \&$ c. for the other Root.

So if $\frac{\dot{y}}{\dot{x}}=a-\frac{1}{4} x+\frac{x^{2}}{64 a}+\frac{13+x^{3}}{512 a^{2}}$, \&xc. that is, if $\frac{\dot{j} x}{\dot{x}}=a x-$ $\frac{2}{4} x^{2}+\frac{x^{3}}{54 a}+\frac{131 x^{4}}{5^{12 a^{2}}}, \delta \mathrm{cc}$. then $y=a x-\frac{1}{8} x^{2}+\frac{x^{3}}{192 a}+\frac{131 x 4}{204^{8 a^{2}}}, 8 \mathrm{cc}$. If $\frac{\dot{y}}{\dot{x}}=\frac{1}{x^{3}}-\frac{1}{x^{2}}+\frac{a}{x^{\frac{1}{2}}}-x^{\frac{1}{2}}+x^{\frac{3}{2}}$, \&cc. or $\frac{\dot{y}}{\bar{x}}=x^{-2}-x^{-1}+$ $a x^{\frac{2}{2}}-x^{\frac{3}{2}}+x^{\frac{5}{2}}$, Scc. then $y=-\frac{1}{2} x^{-2}+x^{-1}+2 a x^{\frac{1}{2}}-\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{5} x^{\frac{5}{2}}$, \&cc. If $\frac{\dot{x}}{\dot{y}}=\frac{2 b^{2} c}{\sqrt{(a)^{3}}}+\frac{3 r^{2}}{a+b}+\sqrt{b y+c y}$, or $\frac{\dot{x} y}{\dot{y}}=\frac{2 l 2^{2}\left(\frac{1}{2}-\frac{1}{2}\right.}{a^{\frac{1}{2}}}+\frac{3 y^{3}}{a+^{6}}$ $+y^{\frac{3}{2}} \sqrt{b+c}$, then $x=-\frac{4^{b x}}{\sqrt{a y}}+\frac{y^{3}}{a+b}+\frac{2}{3} y^{\frac{3}{2}} \sqrt{b+c}$. If $\frac{\dot{y}}{\tilde{z}}=z^{\frac{2}{3}}$, or $\frac{\dot{y} z}{\dot{z}}=z^{\frac{5}{3}}$, then $y=\frac{3}{5} z^{\frac{5}{3}}$. If $\frac{y}{\dot{x}}=\frac{a b}{c x^{\frac{1}{3}}}=\frac{a b}{c} x^{-\frac{x}{3}}$, or $\frac{j x}{\dot{x}}=\frac{a b}{c} x^{\frac{2}{3}}$, then $y=\frac{3 a b}{2 c} x^{\frac{2}{3}}$.

Laftly, if $\frac{\dot{y}}{\dot{x}}=\frac{a}{x}$, or $\frac{j x}{x}=a=a x^{\circ}$; dividing by the Index 0 , it will be $y=\frac{a}{\circ}$, or y is infinite. That this Expreffion, or value of y, muft be infinite, is very plain. For as o is a vanifhing quantity, or lefs than any affignable quantity, its Reciprocal $\frac{1}{\circ}$ or $\frac{a}{o}$ muft be bigger than any affignable quantity, that is, infinite.

$$
\mathrm{O} \circ 2
$$

Now

Now that this quantity ought to be infinite, may be thus proved. In the Equation $\frac{\dot{y}}{\dot{x}}=\frac{a}{x}$, let AB reprefent the conftant quantity a, and in CE let a point move equably from C towards E , and defcribe the Line CDE, of which let any indefinite part CD be x, and its equable Velocity in D , (and every where elfe,) is reprefented

by \dot{x}. Alfo let a point move from a diftant point c along the Line cde, with an inequable Velocity, and let the Line defcribed in the fame time, or the indefinite part of it $c d$, be call'd y, and let the Velocity in d be call'd \dot{y}. The Equation $\frac{y}{\dot{x}}=\frac{a}{x}$ muft always ob tain, whatever the contemporaneous values of x and y may be; or in the whole Motion the conftant Line $\mathrm{AB}(a)$ muft be to the variable Line $\mathrm{CD}(x)$, as the Velocity in $d(\dot{y})$ is to the Velocity in $\mathrm{D}(\dot{x})$. But at the beginning of the Motion, or when CD (x) was indefinitely little, as the ratio of AB to CD was then greater than any aflignable ratio, fo alfo was the ratio $\frac{y}{\dot{x}}$ of the Velocities, or the Velocity \dot{y} was infinitely greater than the Velocity \dot{x}. But an infinite Velocity muft defcribe an infinite Space in a finite time, or the point c is at an infinite diftance from the point d, that is, y is an infinite quantity.

24, 25. But to avoid fuch infinite Expreffions, from whence we can conclude nothing; we are at liberty to change the initial points of the Fluents, by which their Rate of flowing, (the only thing to be here regarded,) will not at all be affected. Thus in the foregoing Figure, we fuppofed the points D and d to be fuch, as limited the contemporaneous Fluents, or in which the two defcribing points were found at the fame time. Let F and f be any other two fuch points, and then the finite Line $\mathrm{CF}=b$ will be contemporaneous to, or will correfpond with, the infinite Line $c f^{\circ}=c$; and FD , which may be made the new x, will correfpond to $f d$, which will be the new y. So that in the given Equation $\frac{y}{x}=\frac{a}{x}$, inftead of
x we may write $b+x$, and we hall have $\frac{y}{x}=\frac{a}{b+x}$, and then by Multiplication and Divifion it is $\frac{j x}{\dot{x}}=\left(\frac{a x}{b+x}=\right) \frac{a x}{b}-\frac{a x^{2}}{b^{2}}+$ $\frac{a x^{3}}{b 3}-\frac{a x^{4}}{b 4}, \& c c$. and therefore $y=\frac{a x}{b}-\frac{a x^{2}}{2 b^{2}}+\frac{a x^{3}}{3 b^{3}}-\frac{a x^{4}}{4 b^{4}}, \&<c$.
26. So if $\frac{y}{x}=\frac{2}{x}+3-x x$, becaufe of the Term $\frac{2}{x}$, which would give an infinite value for y, we may write $1+x$ inftead of x, and we fhall then have $\frac{\dot{y}}{\dot{x}}=\frac{2}{1+x}+2-2 x-x x$, or $\frac{\dot{j} x}{\dot{x}}=$ $\frac{2 x}{1+x}+2 x-2 x^{2}-x^{2}$, or by Divifion $\frac{y_{x}}{\dot{x}}=4^{x}-4 x^{2}+x^{5}-$ $2 x^{4}+2 x^{4}$, \&rc. and therefore $y=4 x-2 x^{2}+\frac{r}{3} x^{3}-\frac{1}{2} x^{4}+$ $\frac{2}{3} x^{5}, \& c c$.
Or the Equation $\frac{\dot{y}}{x}=\frac{2}{1+x}+2-2 x-x^{2}$, that is $\dot{y}+x \dot{y}$ $=4-3 x^{2}-x^{3}$, may be thus refolved:

$$
\begin{aligned}
& \dot{y}=4-4 x+x^{2}-2 x^{3}+2 x^{4}, 8 x c . \\
& y=4 x-2 x^{2}+\frac{r_{3}^{3}}{3} x^{3}-\frac{1}{2} x^{4}+\frac{7}{5} x^{5}, 8 c .
\end{aligned}
$$

Make 4 the firft Term of \dot{y}, then $4 x$ will be the firt Term of $x \dot{y}$, and confequently $-4 x$ will be the fecond Term of \dot{y}. Then - $4 x^{2}$ will be the fecond Term of $x y$, and therefore $+4 x^{2}-3 x^{2}$, or x^{2}, will be the third Term of \dot{y}; and fo on.
27. So if $\frac{y}{x}=x^{-\frac{x}{2}}+x^{-x}-x^{\frac{1}{2}}$, becaufe of the Term x^{-1} clange x into $\mathrm{I}-x$, then $\frac{\dot{y}}{x}=\frac{1}{\sqrt{1-x}}+\frac{1}{1-x}-\sqrt{1-x}$. But by the foregoing Methods of Reduction 'tis $\frac{1}{1-x}=1+x+x^{2}$ $+x^{3}$, \&cc. and $\sqrt{1-x}=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{1} x^{3}$, \&c. and $\frac{1}{\sqrt{1-x}}=\frac{1}{1-\frac{1}{2} x-\frac{1}{\frac{1}{x} x^{2}-\frac{1}{2} x^{3}, 8 c .}}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{8} x^{3}, \& c c$. Therefore collecting thefe according to their Signs, 'tis $\frac{\dot{y}}{x}=1+$ $2 x+\frac{3}{2} x^{2}+\frac{2}{1} \frac{2}{3} x^{3}, \& c$. that is $\frac{j x}{x}=x+2 x^{2}+\frac{3}{2} x^{3}+\frac{2}{1} \frac{2}{6} x^{4}, \& \mathrm{cc}$. and therefore $y=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} \frac{1}{4} x^{4}, \& c$.
28. So if the given Equation were $\frac{y}{x}=\frac{4^{2} x}{\sqrt{3}_{3}-3^{3^{2} x}+3 x^{2}-x^{3}-x^{3}}=$ $\frac{28}{-11^{3}}$; clange the beginning of x, that is, inflead of x write
$c-x$, then $\frac{\dot{y}}{x}=\frac{c^{3}-c^{2} x}{a^{3}}=c^{3} x^{-3}-c^{2} x^{-2}$, or $\frac{j^{x} x}{x}=c^{3} x^{-2}-$ $c^{2} x^{-1}$, and therefore $y=-\frac{1}{2} c^{2} x^{-2}+c^{2} x^{-1}$.

Sect. III. Solution of the Jecond Cafe of Equations.

29,30. \mp Quations belonging to this fecond cafe are thofe, wherein the two Fluents and their Fluxions, fuppofe x and y, \dot{x} and \dot{y}, or any Powers of them, are promifcuoufly involved. As our Author's Analyfes are very intelligible, and feem to want but little explication, I fhall endeavour to refolve his Examples in fomething an eafier and fimpler manner, than is done here; by applying to them his own artifice of the Parallelogram, when needful, or the properties of a combined Arithmetical Progreffion in plano, as explain'd before: As alfo the Methods before made ufe of, in the Solution of affected Equations.
31. The Equation $\dot{y} a x-\dot{x} x y$ - $a n \dot{x}=0$ by a due Reduction becomes $\frac{y}{x}=\frac{y}{a}+\frac{a}{x}$, in which, becaufe of the Term $\frac{a}{x}$ there is occafion for a Tranfmutation, or to change the beginning of the Correlate Quantity x. Affuming therefore the conftant quantity b, we may put $\frac{\dot{y}}{\dot{x}}=\frac{y}{a}+\frac{a}{b+x}$, whence by Divifion will be had $\frac{\dot{y}}{\dot{x}}=\frac{y}{a}+\frac{a}{b}-\frac{a x}{b^{2}}+\frac{a x^{2}}{b^{3}}-\frac{a x^{3}}{b 4}$, \&cc. which Equation is then prepared for the Author's Method of Solution.

But without this previous Reduction to an infinite Series, and the Refolution of an infinite Equation confequent thereon, we may perform the Solution thus, in a general manner. The given Equation is now $\frac{\dot{y}}{\dot{x}}=\frac{y}{a}+\frac{a}{b+x}$, or putting $\dot{x}=1$, it is $a b \dot{y}+a x \dot{y}$ $=b y+y x+a^{2}$, which may be thus refolved:

Difpofing the Terms as you fee is done here, make a^{2} the firn Term of aby, then $\frac{c}{b}$ will be the firft Term of \dot{y}, and thence $\frac{a}{b} x$ will be the firf Term of y. So that $\frac{a^{2}}{b} x$ will be the firf Term of $a x y$, and - $a x$ will be the firft Term of - by. Thefe two together, or $\frac{a^{2}}{b} x-a x=\frac{a^{2}-a b}{b} x$, with a contrary Sign, muft be put down for the fecond Term of aby. Therefore the fecond Term of \dot{y} will be $\frac{b-n}{b^{4}} x$, and the like Term of y will be $\frac{b-a}{2 b^{2}} x^{2}$. Then the fecond Term of $a x y$ will be $\frac{a b-a^{2}}{b^{2}} x^{2}$, and the fecond Term of - by will be $\frac{a-b}{2 b} x^{2}$, and the firft Term of - $x y$ will be $-\frac{a}{b} x^{3}$. 'There three together make $\frac{a b-2 a^{2}-b^{2}}{2 b^{2}} \lambda^{2}$, which with a contrary Sign mult be made the third Term of $a b \dot{y}$. Therefore the third Term of \dot{y} will be $\frac{2 a^{2}+b^{2}-a^{b}}{2 a t^{3}} x^{2}$, and the third Term of y will be $\frac{2 a^{2}+b^{2}-a b}{6 a b 3} x^{3}$. And fo on. Here in a particular cafe if we make $b=a$, we fhall have the fimple Series $y=x *+\frac{x^{3}}{3 a^{2}}-\frac{x^{4}}{6 a^{3}}$, Exc.

Or if we would have a defcending Series for the Root y of this Equation, we may proceed as follows:

Difpofe the Terms as you fee, and make a^{2} the firf Term of the Serics - $x y$; then will - $\frac{a^{2}}{x}$ be the firf Term of y, and $a^{3} x^{-2}$ will be the firit Term of y. Then will $+a^{2} b x^{-1}$ be the firft Term of - $b y$, and $a^{3} x^{-1}$ will be the firft Term of $a x \dot{y}$, which together make $\overline{a+b} \times a^{2} x^{-1}$; this therefore with a contrary Sign muft be the fecond Term of -xy. Then the fecond Term of y will be $\overline{a+b} \times a^{2} x^{-2}$, and the fecond Term of \dot{y} will be $-\overline{a+b} \times 2 a^{2} x^{-3}$. Therefore the fecond Term of - by will be $-\overline{a+1} b \times a^{2} b x^{-3}$,
and the fecond Term of $a x \dot{y}$ will be $-\overline{a+b} \times 2 a^{3} x^{-2}$, and the firf Term of aby will be $a^{3} b x^{-2}$; which three together make $-\overline{2 a^{2}+2 a b+b^{2}} \times a^{2} x^{-2}$. This with a contrary Sign muft be the third Term of -xy, which will give $-\overline{2 a^{2}+2 a b+b^{2}} \times a^{2} x^{-3}$ for the third Term of y; and fo on. Here if we make $b=a$, then $y=$ $-\frac{a^{2}}{x}+\frac{2 a^{3}}{x^{2}}-\frac{5^{4}}{x^{3}}, \& c$.

And thefe are all the Series, by which the value of y can be exbibited in this Equation, as may be proved by the Parallelogram. For that Method may be extended to there Fluxional Equations, as verll as to Algebraical or Fluential Equations. To reduce thefe Equations within the Limits of that Rule, we are to confider, that as $\mathrm{A} x^{m}$ may reprefent the initial Term of the Root y, in both thefe kinds of Equations, or becaufe it may be $y=\mathrm{A} x^{m}, \& \mathrm{c}$. fo in Fluxional Equations (making $\dot{x}=\mathrm{I}$, we fhall have alfo $\dot{y}=m \mathrm{~A} x^{m-r}$, \&c. or writing y for $A x^{m}$, \&c. 'tis $\dot{y}=m y^{-1}$, \&cc. So that in every 'Term of the given Equation, in which \dot{y} occurs, or the Fluxion of the Relate Quantity, we may conceive it to take away one Di menfion from the Correlate Quantity, fuppofe x, and to add it to the Relate Quantity, fuppofe y; according to which Reduction we may infert the Terms in the Parallelogram. And we are to make a like Reduction for all the Powers of the Fluxion of the Relate Quantity. This will bring all Fluxional Equations to the Cafe of Algebraic Equations, the Refolution of which has been fo amply treated of before.

Thus in the prefent Equation $a b \dot{y}+a x \dot{y}=b y+y x+a a$, the Terms muft be inferted in the Parallelogram, as if $y x^{-1}$ were fubftituted inftead of \dot{y}; fo that the Indices will ftand as in the Margin, and the Ruler will give only two Cafes of external Terms. Or rather, if we would reduce this Equation to the form of a double Arithmetical Scale, as explain'd before, we fhould have it in this form. Here in the firft Column are contain'd thofe Terms which have y of one Dimenfion, or what is equivalent to it. In the fecond Column is - a^{2}, or y of no Dimenfions. Alfo in the firft Line is

$\left.\begin{array}{l}\left.\begin{array}{l}-x y \\ -b y j \\ +a b j \\ +a b_{j}\end{array}\right\}-a^{2}\end{array}\right\}=0$. - $x y$, or fuch Terms in which x is of one Dimenfion. In the fecond Line are the Terms - by $\}$ - $a y y\}-a^{2}$, which have no Dimenfons of x, becaufe $+a x y$ is regarded as if it were $a y$. Laftly, in the third line is $a b y$, or the Term in which x is of one negative Dimention.

Dimenfion, because $+a b \dot{y}$ is confider'd as if it were $+a b x x^{-r} y$. And there Terms being thus difpos'd, it is plain there can be but two Cafes of external Terms, which we have already difuns'd.
32. If the proposed Equation be $\frac{y}{x}=3 y-2 x+\frac{x}{y}-\frac{2 y}{x x}$, or making $\dot{x}=1$, 'ts $-\dot{y}+3 y-2 x+x y^{-1}-2 y^{\prime x^{-2}}=0$; the Solution of which we hall attempt without any preparation, or without any new interpretation of the Quantities. Firft, the Terms are to be difpos'd according to a double Arithmetical Scale, the Roots of which are y and x, and then they will ftand as in the Margin. The Method of doing this with certainty in all cafes is as follows. I obferve in the Equation there are three powers of y, which are y^{1}, y^{0}, and y^{-1}; therefore I place the fe in order at the top of the Table. I observe likewife that there are four Powers of x, which are x^{1}, x^{0}, x^{-1}, and x^{-2}, which I place in order in a Column at the right hand; or it will be enough to conceive this to be done. Then I infert every 'Term of the Equation in its proper place, according to its Dimenfions of y and x in that Term; filling up the vacancies with Afterifms, to denote the absence of the Terms belonging to them. The Term $-\dot{y} \mathrm{I}$ infert as if it were $-y^{-1}$, as is explain'd before. Then we may perceive, that if we apply the Ruler to the exterior Terms, we foal have three cafes that may produce Series; for the fourth cafe, which is that of direct afcent or defcent, is always to be omitted, as never affording any Series. To begin with the defending Series, which will arife from the two external Terms $-2 x$ and $+x y^{-1}$. The Terms are to be difpos'd, and the Analysis to be perform'd, as here follows:

Make $x y^{-x}=2 x$, \&cc. then $y^{-1}=2$, \&c. and by Divifion $y=\frac{1}{2}, \& x$. Therefore $3 y=\frac{3}{2}, \&<c$. and consequently $x y^{-1}=*$ $-\frac{3}{2}$, \&cc. or $y^{-1}=*-\frac{3}{2} x^{-1}, \& c$. and by Divifion $y=*+$ $\frac{3}{8} x^{-1}, \& c$. Therefore $3 y=* \frac{2}{8} x^{-1}$, \&cc. and confequently $x y^{-1}$ $=* *-\frac{9}{8} x^{-1}, \& c c$. So that $y^{-1}=* *-\frac{9}{8} x^{-3}, \& c c$. and by Devi-
 Pp
$-\dot{y}={ }^{2}+\frac{3}{8} x^{-2}, \& c$. and $-2 y x^{-2}=-x^{-2}, \& c c$. Thefe three
 \&c. fo that $y=* * *+\frac{1}{4} \frac{1}{2} \frac{5}{8} x^{-3}$, \&cc. And fo on.

Another defcending Series will arife from the two external Terms $+3 y$ and $-2 x$, which may be thus extracted:

$$
\begin{aligned}
& y=\frac{2}{3} x-\frac{5}{18}+\frac{1}{1} \frac{1}{2} x^{-1}-\frac{25}{144} x^{-2}, 8 \mathrm{xc} . \\
& y^{-x}=\frac{3}{2} x^{-1}+\frac{5}{4} x^{-2}-\frac{13}{4} \frac{1}{8} x^{-3}, \& c . \\
& \dot{y}=\frac{2}{3} *-\frac{1}{7} \frac{1}{2} x^{-2}, \& c \mathrm{c} .
\end{aligned}
$$

Make $3 y=2 x$, \&c. then $y=\frac{2}{3} x, \& c$. and (by Divifion) y^{-3} $=\frac{3}{2} x^{-\mathrm{r}}, \& \mathrm{cc}$. and $x y^{-1}=\frac{3}{3}$, , \&c. and $-\dot{y}=-\frac{2}{3}, \& c$. Therefore $3 y=*-\frac{5}{6}$, \&cc. and $y=*-\frac{5}{T 8}$, \&c. and (by Divifion) $x y^{-1}=* \frac{5}{x} x^{-1}$, \&cc. and $-\dot{y}=* 0$, \&c. and $-2 y x^{-2}=-$ $\frac{4}{3} x^{-1}, \& c$. Therefore $3 y=* *+\frac{3}{2} \frac{1}{4} x^{-1}, \& x c$. and $y=* *+$

The afcending Series in this Equation will arife from the two external Terms - $2 y x^{-2}$ and $x y^{-1}$; or multiplying the whole Equation by - y, (that one of the external Terms may be clear'd from y,) we hall have $y y-3 y^{2}+2 x y-x+2 y^{2} x^{-2}=0$, of which the Refolution is thus:

$$
\begin{aligned}
& y=\frac{1}{\sqrt{2}} x^{\frac{3}{2}} *-\frac{3}{8 \sqrt{2}} x^{\frac{5}{2}}-\frac{1}{2} x^{3}+\frac{135}{128 \sqrt{2}} x^{\frac{3}{2}}, \& c c \text {. } \\
& \dot{y}=\frac{3}{2 \sqrt{2}} x^{\frac{3}{2}} *_{0}-\frac{15}{10 \sqrt{2}} x^{\frac{3}{2}}-\frac{3}{2} x^{2}, \text { \&cc. }
\end{aligned}
$$

Make $2 y^{2} x^{-2}=20$, \&cc. then $y^{2}=\frac{1}{2} x^{3}, \& c$. and $y=\frac{1}{\sqrt{2}} x^{\frac{3}{2}}, \& c c_{0}$ Here becaufe of the fractional Indices, and that the firf 'Term of $+\frac{1}{2} x y$, or $+\frac{2}{\sqrt{2}} x^{\frac{2}{2}}$, may be afterwards admitted, we muft take 0 . for the fecond Term of $2 y^{2} x^{-2}$; and therefore for the fecond Term
of y. Then $\dot{y} y=\frac{3}{4} x^{2}, 8 x$. and confequently $2 y^{2} x^{-2}=*-\frac{3}{4} x^{4}$, \&c. and $y^{2}=*-\frac{3}{8} x^{4}$, \&cc. and by extracting the fquare-root, $y=* *-\frac{3}{8 \sqrt{2}} x^{\frac{5}{3}}, \delta \mathrm{cc}$. Then $\dot{y} y=*+0,8 \mathrm{cc}$. and $2 x y=\frac{2}{\sqrt{2}} \dot{x}^{5}$, \&cc. and therefore $2 j^{2} x^{-2}=* * *-\frac{2}{\sqrt{2}} x^{\frac{5}{3}}, \& x c$. and $y=* * *$ - $\frac{1}{2} x^{3}, \& x$. \&uc.

33, 34. The Author's Procefs of Refolution, in this and the following Examples, is very natural, fimple, and intelligible; it proceeds feriation terminatim, by pafling from Series to Scries, and by gathering Term after Term, in a kind of circulating manner, of which Method we have had frequent inftances before. By this means he collects into a Series what hé calls the Sum, which Sum is the value of $\frac{\dot{v}}{x}$ or of the Ratio of the Fluxions of the Relate and Correlate in the given Equation; and then by the former Problem he obtains the value of y. When I firft obferved this Method of Solution, in this Treatife of our Author's, I confefs I was not a little pleafed; it being nearly the fame, and differing only in a few circumftances that are not material, from the Method I had happen'd to fall into feveral years before, for the Solution of Algebraical and Fluxional Equations. This Method I have generally purfued in the courfe of this work, and fhall continue to explain it farther by the following Examples.

The Equation of this Example $1-3 x+y+x^{2}+x y-\dot{y}$ $=0$ being reduced to the form of a double Arithmetical Scale, will ftand as here in the Margin ; and the Ruler will difcover two cafes to be try'd, of which one may give us an afcending, and the other a defcending Series for the Root y. And firft for the afcending Series.

$$
\begin{aligned}
& \begin{array}{r}
\dot{y} \\
-y=1-3 x+x^{2}-\frac{2}{3} x^{3}+\frac{1}{6} x^{4}-\frac{2}{2} x^{5}, \delta \mathrm{cc} . \\
-x y+x+x^{2}-\frac{1}{3} x^{3}+\frac{1}{6} x^{4}-\frac{1}{3} x^{5}, \& c . \\
\ldots-x^{2}+x^{3}-\frac{1}{3} x^{4}+\frac{1}{6} x^{5}, \& c .
\end{array} \\
& \dot{y}=1-2 x+x^{2}-\frac{2}{3} x^{3}+\frac{3}{5} x^{4}-\frac{2}{8} x^{5}, 8 x c . \\
& y=x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3} x^{5}-\frac{1}{4} x^{6}, \& \mathrm{c} .
\end{aligned}
$$

The Terms being difpofed as you fec, make $\dot{y}=\mathrm{I}, \& \mathrm{c}$. then $y=x, \& \mathrm{c}$. Therefore $-y=-x, \& \mathrm{c}$. the Sign of which Term being changed, it will be $\dot{y}=*+x-3 x, \& \mathrm{c}$. $=*-2 x$, , 8 cc .
and therefore $y=*-x^{2}, \& c$. Then $-y=*+x^{2}, \& c$. and - $x y=-x^{2}, 太 c$. thefe deftroying each other, 'tis $\dot{y}=* *+x^{2}$, \&c. and therefore $y=* *+\frac{1}{3} x^{3}, \& \mathrm{cc}$. Then $-y=* *-\frac{1}{3} x^{3}$, \&c. and $-x^{2} y=*+x^{3}$, \&c. it will be $\dot{y}=* * *-\frac{2}{3} x^{3}$, \&cc. and therefore $y=* * *-\frac{1}{6} x^{4}, \& c$ c. \&c.

The Analyfis in the fecond cafe will be thus:

$$
\begin{aligned}
& \left.\begin{array}{r}
-x^{x} y \\
-y \\
+y^{3}
\end{array}\right\} \begin{array}{c}
x^{2}-3^{x}+1 \\
-\ldots+5-6 x^{-1}
\end{array}{ }^{*}+12 x^{-3}, \& 8 c . \\
& y=-x+4-6 x^{-1}+6 x^{-2} *-12 x^{-4}, \& c \mathrm{c} .
\end{aligned}
$$

Make $-x y=x^{2}$, \&xc. then $y=-x$; \&c. Therefore $-y$ $=x, \& \mathrm{c}$. and changing the Sign, 'tis $-x y=*-x-3 x, \& c$. $=*-4 x, \& \mathrm{c}$. and therefore $y=*+4, \& \mathrm{c}$. Then $-y=*$ - 4, \&c. and $\dot{y}=-1$, \&cc. and changing the Signs, 'tis - $x y$ $=* *+5+\mathrm{I}, \& \mathrm{cc}=* *+6, \& \mathrm{cc}$. and $y=* *-6 x^{-3}$, \&c. \&c.

35, 36. If the given Equation were $\frac{\dot{y}}{x}=1+\frac{y}{a}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{i}}$ $+\frac{x^{3} y}{a^{4}}$, \&c. its Refolution may be thus perform'd:

$$
\begin{aligned}
& y=x+\frac{x^{2}}{2 a}+\frac{x^{3}}{2 a^{2}}+\frac{x^{4}}{2 a^{3}}+\frac{x^{3}}{2 a^{4}}, \delta c .
\end{aligned}
$$

Make $\dot{y}=\mathrm{I}, \& \mathrm{c}$, then $y=x, \& \mathrm{c}$. Therefore $-\frac{y}{a}=-\frac{x}{a}$; \&cc. and $\dot{y}=*+\frac{x}{a}, \& c$. and therefore $y=*+\frac{x^{2}}{2 a}, \& x c$. Then $-\frac{y}{a}=*-\frac{x^{2}}{2 a^{2}}$, \&cc. and $-\frac{x y}{a^{2}}=-\frac{x^{2}}{a^{2}}$, \&cc. and therefore $\dot{y}=* *+\frac{3 x^{2}}{2 a^{2}}$, \&cc. and $y=* *+\frac{x^{3}}{2 a^{2}}, \delta c_{\text {. And fo on. }}$. An

Now

Now in this Example, becaufe the Series $\frac{y}{a}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+$ $\frac{x^{3} y}{a^{4}}, \& c$. is equal to $\frac{y}{a-x}$, it will be $\dot{y}=\frac{y}{a-x}+1$, or $a \dot{y}-x \dot{y}$ $=y+a-x$, that is, $y \dot{x}+a \dot{x}-x \dot{x}-a \dot{y}+x \dot{y}=0$; which Equation, by the particular Solution before deliver'd, will give the relation of the Fluents $y x-a y+a x-\frac{1}{2} x^{2}=0$. Hence $y=$ $\frac{a x-\frac{1}{2} x x}{a-x}$, and by Divifion $y=x+\frac{x^{2}}{2 a}+\frac{x^{3}}{2 a^{2}}+\frac{x^{4}}{2 a^{5}}, \& x c$. as found above.
37. The Equation of this Example being tabulated, or reduced to a double Arithmetical Scale, will ftand as here in the Margin. Where it may be obferved, that becaufe of
 the Series proceeding both ways ad infinitum, there can be but one cafe of exterior Terms, of which the Solution here follows:

	$\begin{aligned} & 3 x-6 x^{2}-8 x^{3}-10 x^{4}-12 x^{5}-14 x^{6}, \\ &=\frac{9}{3} x^{3}-12 \frac{3}{4} x^{4}-29 \frac{5}{3} x^{3}-59 \frac{2}{5} x^{6}, \\ & 6 \end{aligned}$
3xy	$-+\frac{9}{8} x^{3}+6 x^{4}+\frac{15}{8} x^{5}+\frac{173}{20} x^{6}$,
- $6 x^{2} y$	$\cdots+9{ }^{4}+12 x^{5}+\frac{15}{4} x^{6}$,
- y^{21}	$4-6 x^{5}-\frac{10}{8}$
$8 x^{3} y$	$-+12 x^{5}+16 x^{6}$,
$+x y^{2}$	$+\frac{9}{4} x^{5}+6 x^{6}$,
-10x ${ }^{4} y$	+
	---.-.-.-.-.-.-.......- $+\frac{17}{8} x^{6}$,

$$
y=-\frac{3}{2} x^{2}-2 x^{3}-\frac{25}{8} x^{4}-\frac{9}{2} \frac{1}{0} x^{4}-\frac{119}{16} x^{6}-\frac{367}{35} x^{7}, 8 \mathrm{cc} .
$$

Make $\dot{y}=-3 x, \& c$. then $y=-\frac{3}{2} x^{2}, \& x$ c. Then $\dot{y}=*-$ $6 x^{2}, \& \mathrm{cc}$. and $y=*-2 x^{3}, 8 x$. Then $-3 x y=+\frac{9}{2} x^{3}, 8 x$. and therefore $\dot{y}=* *-\frac{9}{2} x^{3}-8 x^{3}, \& c c=* *-\frac{25}{2} x^{3}, \&<c$. and y $=* *-{ }_{8}^{2}{ }_{8}^{5} x^{4}, \& x c$. And fo of the reft.

The Author here takes notice, that as the value of \dot{y} is negative, and therefore contrary to that of \dot{x}, it hews that as x increafes, y muft decreafe, and on the contrary. For a negative Velocity is a Velocity backwarks, or whofe direction is contrary to that which
was fuppos'd to be an affirmative Velocity. This Remark muft take place hereafter, as often as there is occafion for it.
38. In this-Example the Author puts x to reprefent the Refate Quantity, or the Root to be extracked, and y to reprefent the Correlate. But to prevent the confufion of Ideas, we thall here change x into y, and y into x, fo that y fhall denote the Relate, and x the Correlate Quantity, as ufual. Let the given Equation therefore be $\frac{\dot{y}}{x}=\frac{1}{2} x-4 x^{2}+2 x y^{\frac{1}{2}}-\frac{4}{5} y^{2}+7 x^{\frac{5}{2}}+2 x^{3}$, whofe Root y is to be extracted. Thefe Terms being difpofed in a Table, will ftand thus: And the Refolution will be as follows, taking $-\dot{y}$ and $+\frac{1}{2} x$ for the two external Terms.

Make $\dot{y}=\frac{1}{2} x, \& c$. then $y=\frac{x}{4} x^{2}, \& c$. Now becaufe it is $\dot{y}=$ $* 0, \& c$. it will be alfo $y=* 0, \& c$. And whereas it is $y^{\frac{3}{2}}=\frac{x}{2} x$, $\& \mathrm{cc}$. it will be $-2 x y^{\frac{1}{2}}=-x^{2}, \& \mathrm{cc}$. and therefore $\dot{y}=* *+x^{2}$. $-4 x^{2}, 8 \mathrm{cc} .=* *-3 x^{2}, 8 \mathrm{cc}$. then $y=* *-x^{3}, \& \mathrm{cc}$. Now becaufe it is $y=*+0, \& c$. it will be alfo $y^{\frac{x}{2}}=*+0, \& c$. and $-2 x y^{\frac{1}{2}}=*+0, \& \mathrm{c}$. and confequently $\dot{y}=* * *+7 x^{\frac{5}{2}}, \& \mathrm{c}$. and therefore $y=* * *+2 x^{\frac{7}{2}}, \& \mathrm{c}$. And fo on.

There are two other cafes of external Terms, which will fupply us with two other Series for the Root y, but they will run too much into Surds. This may be fufficient to fhew the univerfality of the Method, and how we are to proceed in like cafes.
39. The Author Shews here, that the fame Fluxional Equation may often afford a great variety of Series for the Root, according as we fhall introduce any conftant quantity at pleafure. Thus the Equation of Art. 34. or $\dot{y}=1-3 x+y+x_{-}^{2}+x y$, may be refolved after the following general manner:

$$
\begin{aligned}
y=a & +x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{3}, \varepsilon^{3} c . \\
& +a x+a x^{2}+\frac{2}{3} a x^{3}+\frac{5}{18} a x^{3}
\end{aligned}
$$

Here inftead of making $\dot{y}=1$, \&c. we may make $\dot{y}=0$, \&c. and therefore $y=a, \& c$. becaufe then $\dot{y}=0, \& c$. then $-y=$ $-a, \& c$. and confequently $\dot{y}=*+a+1$, \&c. and therefore. y $=++a x+x$, \&c. Then $-y=*-a x-x$, \&c. and - $x y$ $=-a x, \& c$. and therefore $\dot{y}=* *+2 a x+x-3 x$, \& $=$ * $+2 a x-2 x, 8 c$. and then $y=* *+a x^{2}-x^{2}$, \&c. Therefore $-y={ }^{*} *-a x^{2}+x^{2}$, \&cc. and - $x y=*-a x^{2}-x^{2}$, \&c. and confequently $\dot{y}=* * *+2 a x^{2}+x^{2}$, \&c. and $y=$ ** * $+\frac{1}{3} a x^{3}+\frac{1}{3} x^{3}$, \&cc. \&c. Here if we make $a=0$, we thall have the fame value of y as was extracted before. And by whatever Number a is interpreted, fo many different Series we fhall obtain for y.
40. The Author here enumerates three cafes, when an arbitrary Number fhould be affumed, if it can be done, for the filf Term of the Root. Firft, when in the given Equation the Root is affected with a Fractional Dimenfion, or when fome Root of it is to be extracted ; for then it is convenient to have Unity for the firft Term, or fome other Number whofe Root may be extracted without a Surd, if fuch Number does not offer itfelf of its own accord. As in the. fourth Example 'tis $x=\frac{1}{4} y^{2}$, \&xc. and therefore we may eafily have $x^{\frac{1}{2}}=\frac{1}{2} y$, \&c.: Secondly, it muft be done, when by; reafon of the fquare-root of a negative Quantity, we fhould otherwife fall upon impoflible Numbers. Laftly, we muft affume fuch a Number, when otherwife there would be no initial Quantity, from whence to begin the computation of the Root; that is, when the Relate Quantity, or its Fluxion, affects all the Terms of the Equation:

41, 42, 43. The Author's Compendiums of Extraction-are very curious, and hew the univerfality of his Method. As his feveral Proceffes want no explanation, I fhall proceed to refolve his Examples by the. foregoing general Method. As, if the given Equation were $\dot{y}=\frac{1}{y}-x^{2}$, or $\dot{y}-y^{-3}=-x^{2}$, the Refolution might be thus:

$$
\begin{aligned}
& y=a+\frac{x}{a}-\frac{x^{2}}{2 a^{3}}+\frac{\frac{x}{3}}{2 a^{5}}-\frac{5 \times 4}{8 a^{7}}, s c . \\
& -\frac{1}{3} x^{3}+\frac{x^{4}}{12 a^{2}}
\end{aligned}
$$

Make $\dot{y}=0$, \&c. then affuming any conftant quantity a, it may be $y=a$, \&c.' 'Then by Divifion - $y^{-1}=-a^{-1}$, \&c. and therefore $\dot{y}=*+a^{-1}, \& c$. and confequently $y=*+a^{-1} x$, \&c. Then by Divifion $-y^{-1}=*+a^{-3} x$, \&c. and therefore $\dot{y}=$ ** - $a^{-3} x$, \&c. and confequently $y=* *-\frac{1}{2} a^{-3} x^{2}, \& c$. Then again by Divifion - $y^{-1}=* *-\frac{3}{2} a^{-5} x^{2}, \& c$. and therefore $\dot{y}=$ $* * *+\frac{3}{2} a^{-5} x^{2}-x^{2}, \& c$. and confequently $y=* * \frac{1}{2} a^{-5} x^{3}-\frac{1}{3} x^{3}$, \&c. And fo of the reft. Here if we make $a=\mathrm{I}$, we thall have $y=1+x-\frac{x}{2} x^{2}+\frac{1}{8} x^{3}-\frac{1}{2} \frac{3}{4} x^{4}, \& c c$.

Or the fame Equation may be thus refolved:

$$
\begin{aligned}
& \left.-y^{-1}\right\}=-x^{2}+2 x^{-3}+14 x^{-8}+216 x^{-13}, 8 \mathrm{c} . \\
& +\dot{y}\} \cdots--2 x^{-3}-14 x^{-8}-216 x^{-13}, \& c \text {. } \\
& y=x^{-2}+2 x^{-7}+18 x^{-12}+280 x^{-17}, \&<c \text {. }
\end{aligned}
$$

Make $-y^{-1}=-x^{2}, \& \mathrm{c}$. or $y=x^{-2}, \& \mathrm{c}$. Then $\dot{y}=-2 x^{-3}$, \&ic. and therefore $-y^{-\mathrm{I}}=*+2 x^{-3}, \& \mathrm{cc}$. and confequently by Divifion $y=*+2 x^{-7}$, \&c. Then $y=*-14 \dot{x}^{-8}, 8 \mathrm{c}$. and therefore $-y^{-1}$ $\pm *+14 x^{-8}, \& \mathrm{c}$. and by Divifion $y=* *+18 x^{-12}, \& \mathrm{c}$. Then $\dot{y}=* *-216 x^{-13}, \& \mathrm{c}$. and therefore - $y^{-1}=* * *+216 x^{-13}$, \&c. and by Divifion $y=* * *+280 x^{-17}, \& \mathrm{c}$. And to on.

Another afcending Series may be had from this Equation, viz. $y=\sqrt{ } 2 x-\frac{2}{7} x^{3}+\frac{x^{\frac{11}{2}}}{147^{\sqrt{2}}}+\frac{10 x^{8}}{17493}$, \&cc. by multipying it by y, and then making I the firft Term of $y \dot{y}$.
44. The Equation $\dot{y}=3+2 y-x^{-1} y^{2}$ may be thus refolved:

$$
\begin{aligned}
& \left.\begin{array}{l|l}
& \frac{y^{2} y^{\mathrm{y}} y^{0}}{x^{0}} \\
x^{-1} & -x^{*-1} y^{2}-2 y+3 \\
x^{2}
\end{array}\right\}=0 .
\end{aligned}
$$

Make $y=3$, \&c. then $y=3 x$, Sxc. Therefore $-2 y=-6 x, \& x$. and $x^{-1} y^{\prime 2}=9 x$, \&c. and confequently $y=*-3 x$, \&c. Therefore $y=*-\frac{3}{2} x^{2}, \& c \mathrm{c}$. Then $-2 y=*+3 x^{2}, \& c$. and $x^{-1} y^{2}=$ $*-9 x^{2}, \& \mathrm{xc}_{0}$ Therefore $\dot{y}=* *+6 x^{2}, \& \mathrm{cc}$, and $y=* *+2 x^{\frac{1}{3}}$, \&c. \&c.

Or the Refolution may be perform'd after thefe two following manners :

$$
\begin{aligned}
& y=-\frac{3}{2}+\frac{9}{8} x^{-1}-\frac{9}{4} x^{-2}, \& c c . \quad y=2 x+\frac{1}{2}-\frac{3}{8} x^{-1}, \delta c c .
\end{aligned}
$$

Make $-2 y=3$, \&x. or $y=-\frac{3}{2}$, \&c. then $\dot{y}=0, \& c$. and $x^{-1} y^{2}=+\frac{9}{4} x^{-1}$, \&c. Therefore - $2 y=* \frac{9}{4} x^{-1}$, \&c. or y $=*+\frac{9}{8} x x^{-1}, \& c$. and $\dot{y}=*-\frac{9}{8} x^{-2}, \& c$. and by fquaring $x^{-1} y^{2}$ $=*-\frac{27}{8} x^{-2}, \& c$. and therefore $-2 y=* *+\frac{9}{2} x^{-2}, \& c$. and $y=* *-\frac{9}{4} x^{-2}, \& c c$. And fo on.

Again, divide the whole Equation by y, and make $x^{-1} y=2$, \&c. then $y=2 x, \& \mathrm{cc}$. And becaufe $\dot{y}=2,8 \mathrm{cc}$. and $y^{-1}=\frac{1}{2} x^{-1}, \& \mathrm{cc}$. 'tis $y y^{-1}=x^{-1}, \& x c$. and $-3^{y^{-1}}=-\frac{3}{2} x^{-1}$, \&c. therefore $\dot{y} x^{-1}$ $=*+\frac{1}{2} x^{-1}, \& c$. and $y=*+\frac{1}{2}, \& c$. Then becaufe $j y^{-1}=$ $*+0, \& c$ c. and $-3 y^{-1}=*+\frac{3}{8} x^{-2}, \&$ c. 'tis $y x^{-1}=* *-\frac{3}{8} x^{-2}$, \&c. and $y=* *-\frac{3}{8} x^{-1}$, \&c. \&cc.

45,46 . If the propofed Equation be $\dot{y}=-y+x^{-1}-x^{-2}$, its Solution may be thus:

Make $\dot{y}=-x^{-2}, \& c$. then $y=x^{-1}, \& c$. Confequently $\dot{y}=$ $* 0, \& c \mathrm{c}$. and therefore $y=* 0, \& \mathrm{c}$. that is, $y=x^{-1}$.

Again, make $y=x^{-r}, \& c c$. then $y=-x^{-2}, \& c c$. and confequently $y=*+0, \& \mathrm{c}$. that is, $y=x^{-1}$.

That this fhould be fo, may appear by the direct Method. For if $y=x^{-1}$, 'tis $\dot{y}=-\dot{x} x^{-2}$; alfo $y \dot{x}=\dot{x} x^{-1}$. Then adding thefe two Equations together, 'tis $y \dot{x}+\dot{y}=\dot{x} x^{-1}-\dot{x} x^{-2}$, or $\dot{y}=-y$ $+x^{-1}-x^{-2}$. Thus may we form as many Fluxional Equations

298

The Method of Fluxions,
as we pleafe, of which the Fluents may be exprefs'd in finite Terms; but to return to thefe again may fometimes require particular Expedients. Thus if we affume the Equation $y=2 x-\frac{4}{3} x^{2}+\frac{2}{5} x^{3}$, taking the Fluxions, and putting $\dot{x}=\mathrm{I}$, we fhall have $\dot{y}=2$ $\frac{1}{3} x+\frac{3}{5} x^{2}$, as alfo $\frac{y}{2 x}=1-\frac{2}{3} x+\frac{1}{1} x^{2} x^{2}$. Subtract this laft from the foregoing Equation, and we fhall have $\dot{y}-\frac{y}{2 x}=1-2 x+\frac{1}{2} x^{2}$, the Solution of which here follows.
47. Let the propos'd Equation be $\dot{y}=\frac{y}{2 x}+1-2 x+\frac{1}{2} x^{2}$, of which the Solution may be thus:

$$
\begin{aligned}
& \begin{aligned}
& \dot{y} \\
&\left\{\begin{array}{r}
=t-2 x+\frac{1}{2} x^{2} \\
-\frac{y}{2 x}
\end{array}\right\}-e-f x+g x^{2} \\
& y=2 e x+2 f x^{2}+2 x^{2} \\
& y=2 x-\frac{4}{3} x^{2}+\frac{1}{5} x^{3}
\end{aligned} \\
& \left.\begin{array}{r}
y \\
-\frac{y}{2 x}
\end{array}\right\} \begin{array}{l}
=\frac{1}{2} x^{2}-2 x+1 \\
+c x^{2} \\
-c x^{2}-f x+g
\end{array}+g \\
& \begin{array}{l}
y=2 e x x^{3}+2 f x^{2}+2 g \\
y=\frac{1}{5} x^{3}-\frac{4}{3} x^{2}+2 x
\end{array}
\end{aligned}
$$

By tabulating the Terms of this Equation, as ufual, it may be obferved, that one of the external Terms $-\dot{y}+\frac{1}{2} y x^{-1}$ is a double Term, to which the other external Term I belongs in common. Therefore to feparate thefe, affume $y=2 e x, \& c$. then $-\frac{y}{2 x}$ $=-c, \& c$. and confequently $\dot{y}=1+e, \& c$. and therefore y $=x+e x, \& \mathrm{c}$. That is, becaufe $2 e x=x+e x$, or $2 e=1+e$, 'tis $e=\mathrm{I}$, or $y=2 x, \& \mathrm{c}$. So if we make $y=*+2 f x^{2}, \& \mathrm{c}$. then $-\frac{y}{2 x}=*-f \dot{x}$, \&c, therefore $\dot{y}=*+f x-2 x, \& c$. and $y=*+\frac{1}{2} f x^{2}-x^{2}$, \&x. that is, $2 f=\frac{1}{2} f-1$, or $f=-\frac{2}{3}$. So that $y=*-\frac{4}{3} x^{2}, \& c$. So if we make $y=* *+2 g x^{3}, \& c$. then $-\frac{y}{2 x}=* *-g x^{2}, \& \mathrm{c}$. and therefore $\dot{y}=* *+g x^{2}+\frac{1}{2} x^{2}, \& \mathrm{c}$. and $y=* *+\frac{1}{3} g x^{3}+\frac{1}{6} x^{3}, \& \mathrm{c}$. or $2 g=\frac{1}{3} g+\frac{1}{6}$, or $g=\frac{1}{5}$, fo that $y=* * \frac{1}{5} x^{3}, \& c$. So if we make $y=* * * 2 b x^{4}, \& c$. then $-\frac{y}{2 x}=* * *-b x^{3}, \& c$. and therefore $\dot{y}=* * *+b x^{3}, \& c$. and $y=* * *+\frac{1}{4} b x^{4}$, \&c. But becaufe here $2 b=\frac{1}{4} b$, this Equation would be abfurd except $b=0$. And fo all the fubfequent Terms will vanifh in infinitum, and this will be the exact value of y. And the fame may be done from the other cafe of external Terms, as will appear from the Paradigm.
48. Notining can be added to illufrate this Inveftigation, unlefs we would demonfrate it fynthetically. Becaufe $y=e x^{3}$, as is here found,
found, therefore $\dot{y}=\frac{3}{4} e x^{\frac{3}{4}-1}$, or $\dot{y}=\frac{3 e x^{\frac{3}{4}}}{4^{x}}$. Here inftead of $e x^{\frac{3}{4}}$ fubftitute y, and we Mall have $\dot{y}=\frac{3 v}{4^{x}}$, as given at firf.

49, 50. The given Equation $\dot{y}=y x^{-2}+x^{-2}+3+2 x-4 x^{-x}$ may be thus refolved after a general manner.

$$
\begin{aligned}
& \left.-x^{-2} y\right\} \begin{array}{r}
\dot{y}+3-4 x^{-1}+x^{-2}-x^{-3}+\frac{2}{2} x^{-4}, \text { \&c. } \\
+1+4 x^{-1}+a x^{-2}-a x^{-3}+\frac{1}{2} a x^{-4} \\
+1-4 x^{-1}-a x^{-2}+x^{-3}-\frac{1}{2} x^{-4}, ~ \& c . \\
+a x^{-3}-\frac{1}{2} a x^{-4}
\end{array} \\
& y=x^{2}+4 x+a-x^{-1}+\frac{1}{2} x^{-2}-\frac{1}{6} x^{-3}, \text { \& \& . } \\
& -a x^{-1}+\frac{1}{2} a x^{-2}-\frac{1}{6} a x^{-3} .
\end{aligned}
$$

Make $y=2 x, \& c$. then $y=x^{2}, \& c c$. Therefore- $x-2 y=-1$, $\& c$ confequently $\dot{y}=*+\mathrm{I}+3, \& \mathrm{cc}=* 4, \& \mathrm{cc}$. and therefore $y=*+4 x$, \&c. Then $-x^{-2} y=*-4^{x^{-1}}, \& c$. and confequently $\dot{y}=* *+o, \& c$. and therefore affiuming any conftant quantity a, it may be $y=* *+a$, \&cc. Then $-x^{-2} y=* *$ $-a x^{-2}$, \&c. and therefore, $y=* * *+a x^{-2}+x^{-2}$, \&c. and $y=* * *-a x^{-1}-x^{-1}, \& c c$. And fo on. Here if we make $a=0$, 'tis $y=x^{2}+4 x *-\frac{1}{x}+\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}, \& c$.

51, 52. The Equation of this Example is $\dot{y}=3 x y^{\frac{2}{3}}+y$, which we chall refolve by our ufual Method, without any other preparation than dividing the whole by $y^{\frac{2}{3}}$, that one of the Terms may be clear'd from the Relate Quantity ; which will reduce it $j y^{-\frac{2}{3}}-y^{\frac{2}{3}}$ $=3^{x}$, of which the Refolution may be thus:

$$
\begin{aligned}
& y=\frac{7}{8} x^{6}+\frac{1}{2} \frac{1}{4} x^{7}+\frac{1}{2} \frac{1}{8} x^{8} x^{8}, \& \mathrm{c} .
\end{aligned}
$$

Make $j y^{-\frac{2}{3}}=3 x$, \&c. or taking the Fluents, $3 y^{\frac{2}{3}}=\frac{3}{2} x^{2}$, \&cc. or $y^{\frac{1}{3}}=\frac{1}{2} x^{2}, \& c$. or $y=\frac{2}{8} x^{6}$, \&c. And becaufe $-y^{\frac{2}{3}}=-\frac{1}{2} x^{2}$, \&c. it will be $j y^{-\frac{2}{3}}=*+\frac{1}{2} x^{2}$, \&c. and therefore $3 y^{\frac{1}{3}}=*+$ $\frac{1}{6} x^{3}, \& c$. and $y^{\frac{2}{3}}=*+\frac{1}{\frac{1}{8}} x^{3}$, \&c. and by cubing $y=*+\frac{1}{\frac{1}{4}} x^{7}$,
 \&c. and therefore $3^{y^{\frac{1}{3}}}=* *+\frac{1}{2} \frac{1}{2} x^{4}, \& \mathrm{cc}$. and $y^{\frac{2}{3}}=* *+\frac{1}{2} \frac{1}{1} \sigma^{x^{4}}$, \&x. and by cubing $y=* *+\frac{1}{2} \frac{x}{8} x^{8}$, \&cc. And fo on.

$$
\mathrm{Qq}_{2}
$$

53. Laftly, in the Equation $\dot{y}=2 y^{\frac{1}{2}}+x^{\frac{1}{2}} y^{\frac{1}{2}}$, or $\dot{y} y^{-\frac{1}{2}}=2 \dot{x}+$ $\dot{x} x^{\frac{5}{2}}$, affuming c for a conftant quantity, whofe Fluxion therefore is 0 , and taking the Fluents, it will be $2 y^{\frac{1}{2}}=2 c+2 x+\frac{2}{3} x^{\frac{3}{2}}$, or $y^{\frac{1}{2}}=c+x+\frac{1}{3} x^{\frac{3}{2}}$. Then by fquaring, $y=c^{2}+2 c x+x^{2}+$ $\frac{2}{3} c x^{\frac{3}{2}}+\frac{2}{3} x^{\frac{5}{2}}+\frac{1}{2} x^{3}$. Here the Root y may receive as many different values, while x remains the fame, as c can be interpreted different ways. Make $c=0$, then $y=x^{2}+\frac{2}{3} x^{\frac{5}{2}}+\frac{1}{9} x^{3}$.

The Author is pleas'd here to make an Excufe for his being fo minute and particular, in difcuffing matters which, as he fays, will but feldom come into practice; but I think any Apology of this kind is needlefs, and we cannot be too minute, when the perfection of a Method is concern'd. We are rather much obliged to him for giving us his whole Method, for applying it to all the cafes that may happen, and for obviating every difficulty that may arife. The ufe of thefe Extractions is certainly very extenfive; for there are no Problems in the inverfe Method of Fluxions, and efpecially fuch as are to be anfwer'd by infinite Series, but what may be reduced to fuch Fluxional Equations, and may therefore receive their Solutions from hence. But this will appear more fully hereafter.

Sect. IV. Solution of the third Cafe of Equations, with fome neceffary Demonftrations.
54. C OR the more methodical Solution of what our Author calls a moft troublefome and difficult Problenn, (and furely the Inverfe Method of Fluxions, in its full extent, deferves to be call'd fuch a Problem,) he has before diftributed it into three Cafes. The firf Cafe, in which two Fluxions and only one flowing Quantity occur in the given Equation, he has difpatch'd without much difficulty, by the affiftance of his Method of infinite Series. The fecond Cafe, in which two flowing Quantities and their Fluxions are any how involved in the given Equation, even with the fame affiflance is fill an operofe Problem, but yet is difcufs'd in all its varieties, by a fufficient number of appofite Examples. The third Cafe, in which occur more than two Fluxions with their Fluents, is here very artfully managed, and all the difficulties of it are reduced to the other two Cafes. For if the Equation involves (for inftance) three Fluxions, with fome or all of their Fluents, another Equation ought to be given by the Queftion, in order to a full Determination,
termination, as has been already argued in another place; or if not, the Queftion is left indetermined, and then another Equation may be affumed ad libitum, fuch as will afford a proper Solution to the Queftion. And the reft of the work will only require the two former Cafes, with fome common Algebraic Reductions, as we fhall fee in the Author's Example.
55. Now to confider the Author's Example, belonging to this third Cafe of finding Fluents from their Fluxions given, or when there are more than two variable Quantities, and their Fluxions, either exprefs'd or underfood in the given Equation. This Example is $2 \dot{x}-\dot{z}+\dot{y} x=0$, in which becaufe there are three Fluxions \dot{x}, \dot{y}, and \dot{z}, (and therefore virtually three Fluents x, y, and z, and but one Equation given; I may affume (for inftance) $x=y$, whence $\dot{x}=\dot{y}$, and by fubstitution $2 \dot{y}-\dot{z}+\dot{y} y=0$, and therefore $2 y-$ $z+\frac{1}{2} y^{2}=0$. Now as here are only two Equations $x-y=0$ and $2 y-z+\frac{1}{2} y^{2}=0$, the Quantities x, y, and z are Atill variable Quantities, and fufceptible of infinite values, as they ought to be. Indeed a third Equation may be had, as $2 x-z+\frac{1}{2} x^{2}=0$; but as this is only derived from the other two, it brings no new limitation with it, but leaves the quantities fill flowing and indeterminate quantities. Thus if I fhould affume $2 y=a+z$ for the fecond Equation, then $2 \dot{y}=\dot{z}$, and by fubftitution $2 \dot{x}-2 \dot{y}+\dot{y} x=0$, or $\dot{y}=\frac{2 \dot{x}}{2-x}=\dot{x}+\frac{1}{2} x \dot{x}+\frac{1}{4} x^{2} \dot{x}$, \&c. and therefore $y=x+\frac{1}{4} x^{2}$ $+\frac{1}{T_{2}^{2}} x^{3}$, \&c. which two Equations are a compleat Determination. Again, if we affume with the Author $x=y^{2}$, and thence $\dot{x}=2 y \dot{y}$, we fhall have by fubftitution $4 y \dot{y}-\dot{z}+\dot{y} y^{2}=0$, and thence $2 y^{2}$ $-z+\frac{1}{3} y^{3}=0$, which two Equations are a fufficient Determination. We may indeed have a third, $2 x-z+\frac{1}{3} x^{\frac{3}{2}}=0$; but as this is included in the other two, and introduces no new limitation, the quantities will ftill remain fluent. And thus an infinite variety of fecond Equations may be affumed, tho' it is always convenient, that the affumed Equation fhould be as fimple as may be. Yet fome caution muft be ufed in the choice, that it may not introduce fuch a limitation, as fhall be inconfiftent with the Solution. Thus if I fhould affume $2 x-z=0$ for the fecond Equation, I fhould have $2 \dot{x}-\dot{z}=0$ to be fubftituted, which would make $\dot{y} x=0$, and therefore would afford no Solution of the Equation.
'Tis eafy to extend this reafoning to Equations, that involve four or more Fluxions, and their flowing Quantities; but it would be needlefs here to multiply Examples. And thus our Author las compleatly folved this Cafe alfo, which at firf view might appear for-
midable enough, by reducing all its difficulties to the two former Cafes.

56, 57. The Author's way of demonftrating the Inverfe Method of Fluxions is fhort, but fatisfactory enough. We have argued elfewhere, that from the Fluents given to find the Fluxions, is a direct and fynthetical Operation ; and on the contrary, from the Fluxions given to find the Fluents, is indireet and analytical. And in the order of nature Synthefis fhould always precede Analyfis, or Compofition fhould go before Refolution. But the Terms Synthefis and Analyfis are often ufed in a vague fenfe, and taken only relatively, as in this place. For the direct Method of Fluxions being already demonftrated fynthetically, the Author declines (for the reafons he gives) to demonftrate the Inverfe Method fynthetically alfo, that is, primarily, and independently of the direct Method. He contents himfelf to prove it analytically, that is, by fuppofing the direct Method, as fufficiently demonftrated already, and thewing the neceffary connexion between this and the inverfe Method. And this will always be a full proof of the truth of the conclufions, as Multiplication is a good proof of Divifion. Thus in the firft Example we found, that if the given Equation is $y+x y-\dot{y}=3 x-x^{z}-\mathrm{I}$, we hall have the Root $y=x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3} x^{3}-\frac{x}{4} x^{6}$, \&c. To prove the truth of which conclufion, we may hence find, by the direct Method, $\dot{y}=1-2 x+x^{2}-\frac{2}{3} x^{3}+\frac{7}{6} x^{4}-\frac{2}{1} x^{5}, \&<c$. and then fubftitute thele two Series in the given Equation, as follows:

$$
\begin{aligned}
& y \cdots+x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3} x^{5}-\frac{1}{4} x^{6}, \& \mathrm{c} . \\
& +x y \cdots-\cdots+x^{2}-x^{3}+\frac{1}{3} x^{4}-\frac{1}{6} x^{5}+\frac{1}{3} x^{6}, \& x c \text {. }
\end{aligned}
$$

Now by collecting thefe Series, we fhall find the refult to produce the given Equation, and therefore the preceding Operation will be fufficiently proved.
58. In this and the fubfequent paragraphs, our Author comes to open and explain fome of the chief Myfteries of Fluxions and Fluents, and to give us a Key for the clearer apprehenfion of their nature and properties. Therefore for the Learners better inftruction, I thall not think much to inquire fomething more circumftantially into this matter. In order to which let us conceive any number of right Lines, $\mathrm{AE}, a \mathrm{e}, \alpha \varepsilon, \& \mathrm{c}$. indefinitely extended both ways, along which a Body, or a defcribing Point, may be fuppofed to move in each Line,

Line, from the left-hand towards the right, according to any Law or Rate of Acceleration or Retardation whatever. Now the Motion of every one of thefe Points, at all times, is to be eftimated by its diftance from fome fixt point in the fame Line ; and any fuch Points may be chofen for this purpofe, in each Line, fuppofe B, b, β, in which all the Bodies have been, are, or will be, in the fame Moment of Time, from whence to compute their contemporaneous Augments, Differences, or flowing Quantities. Thefe Fluents may be conceived as negative before the Body arrives at that point, as nothing when in it, and as affirmative when they are got beyond it. In the firft Line AE, whofe Fluent we denominate by x, we may fuppole the Body to move uniformly, or with any equable Velocity; then may the Fluent x, or the Line which is continually defcribed,

reprefent Time, or ftand for the Correlate Quantity, to which the feveral Relate Quantities are to be conftantly refer'd and compared. For in the fecond Line $a e$, whofe Fluent we call y, if we fuppofe the Body to move with a Motion continually accelerated or retarded, according to any conftant Rate or Law, (which Law is exprefs'd by any Equation compos'd of x and y and known quantities;) then will there always be contemporaneous parts or augments, defcribed in the two Lines, which parts will make the whole Fluents to be contemporaneous alfo, and accommodate themfelves to the Equation in all its Circumftances. So that whatever value is affumed for the Correlate x, the correfponding or contemporaneous value of the Relate y may be known from the Equation, and vice versâ. Or from the Time being given, here reprefented by x, the Space reprefented by y may always be known. The Origin (as we may call it) of the Fluent x is mark'd by the point B , and the Origin of the Fluent y by the point b. If the Bodies at the fame time are found in A and a, then will the contemporaneous Fluents be - BA and -ba. If at the fame time, as was fuppofed, they are found in their refuective Origins B and b, then will each Fluent be nothing. If at the fame time they are found in C and c, then will their Fluents be $+B C$ and $+b c$. And the like of all other points, in wisch the
moving Bodies either have been, or fhall be found, at the fame time.

As to the Origins of thefe Fluents, or the points from whence we begin to compute them, (for tho' they muft be conceived to be variable and indetermined in refpect of one of their Limits, where the defcribing points are at prefent, yet they are fixt and determined as to their other Limit, which is their Origin,) tho' before we appointed the Origin of each Fluent to be in B and b, yet it is not of abfolute neceflity that they fhould begin together, or at the fame Moment of Time. All that is neceffary is this, that the Motions may continue as before, or that they may obferve the fame rate of flowing, and have the fame contemporaneous Increments or Decrements, which will not be at all affected by changing the beginnings of the Fluents. The Origins of the Fluents are intirely arbitrary things, and we may remove them to what other points we pleafe. If we remove them from B and b to A and c, for inftance, the contemporaneous Lines will ftill be AB and $a b, \mathrm{BC}$ and $b c$, \&c. tho' they will change their names. Inftead of - AB we chall have 0 , inftead of B or \circ we fhall have $+A B$, inftead of $+B C$ we hatl have $+A C$; \&c. So inftead of - $a b$ we hall have - $a c+b c$, inftead of b or o we fhall have -bc, inftead of $+b d$ we fhall have $+b c+c d, \& c$. That is, in the Equation which determines the general Law of flowing or increafing, we may always increafe or diminifh x, or y, or both, by any given quantity, as occafion may require, and yet the Equation that arifes will ftill exprefs the rate of flowing; which is all that is neceffary here. Of the ufe and conveniency of which Reduction we have feen feveral inftances before.

If there be a third Line $\alpha \varepsilon$, defcribed in like manner, whofe Fluent may be z, having its parts correfponding with the others, as $\alpha \beta, \beta \gamma, \gamma^{\delta}, \& c$. there muft be another Equation, either given or affumed, to afcertain the rate of flowing, or the relation of \approx to the Correlate x. Or it will be the fame thing, if in the two Equations the Fluents x, y, z, are any how promifcuoufly involved. For thefe two Equations will limit and determine the Law of flowing in each Line. And we may likewife remove the Origin of the Fluent \approx to what point we pleafe of the Line $\alpha \varepsilon$. And fo if there were more Lines, or more Fluents.
59. To exemplify what has been faid by an eafy inftance. Thus inftead of the Equation $\dot{y}=\dot{x} x y$, we may affume $\dot{y}=\dot{x} y+\dot{x} x y$, where the Origin of x is changed, or x is diminifl'd by Unity ; for $I+x$ is fubstituted inftead of x. The lawfulnefs of which Reduction
duction may be thus proved from the Principles of Analyticks. Make $x=1+z$, whence $\dot{x}=\dot{z}$, which hews, that x and z flow or increafe alike. Subftitute thefe inftead of x and \dot{x} in the Equation $\dot{j}=\dot{\therefore} x y$, and it will become $\dot{y}=\dot{z} y+\dot{z} z y$. This differs in nothing elfe from the affumed Equation $\dot{y}=\dot{x} y+\dot{x} x y$, only that the Symbol x is changed into the Symbol $\underset{\sim}{ } \mathbf{2}$, which can make no real change in the argumentation. So that we may as well retain the fame Symbols as were given at firft, and, becaufe $z=x-1$, we may as well fuppofe x to be diminifh'd by Unity.

60, 6 I. The Equation expreffing the Relation of the Fluents will at all times give any of their contemporaneous parts; for affuming different values of the Correlate Quantity, wo thall thence have the correfponding different values of the Relate, and then by fubtraction we fhall obtain the contemporary differences of each. Thus if the given Equation were $y=x+\frac{1}{x}$, where x is fuppos'd to be a quantity equably increafing or decreafing; make $x=0,1,2,3,4,5$, \&c. fucceflively, then $y=$ infinite, $2,2 \frac{1}{2}, 3 \frac{1}{3}, 4 \frac{1}{4}, 5 \frac{1}{5}$, \& c. refpectively. And taking their differences, while x flows from 0 to I, from 1 to 2 , from 2 to $3, \& c$ c. y will flow from infinite to 2 , from 2 to $2 \frac{1}{2}$, from $2 \frac{1}{2}$ to $3 \frac{\pi}{3}, \& x c$. that is, their contemporaneous parts will be $1, I, I, I, \& c$. and infinite, $\frac{1}{2}, \frac{5}{6}, \frac{1}{1} \frac{1}{2}$, \& C . refpectively. Likewife, if we go backwards, or if we make x negative, we fhall have $x=0,-\mathrm{I},-2, \& c$. which will make $y=$ infinite, -2 , $-2 \frac{1}{2}$, \&c. fo that the contemporaneous differences will be as before.

Perhaps it may make a ftronger impreffion upon the Imagination, to reprefent this by a Figure. To the rectangular Afymptotes GOH and KOL let ABC and DEF be oppofite Hyperbola's; bifect the Angle GOK by the indefinite right Line vOR, perpendicular to which draw the Diameter BOE, meeting the Hyperbola's in B and E, from whence draw $B Q P$ and EST, as alfo CLR and DKU parallel to GOH. Now if OL is made to reprefent the indefinite and equable quantity x in the Equation $y=x+\frac{1}{x}$,
 then CR may reprefent y. For $\mathrm{CL}=\frac{1}{\mathrm{OL}}=\frac{1}{x}$, (fuppofing BQ $=\mathrm{OQ}=\mathrm{I}$,) and $\mathrm{LR}=\mathrm{OL}=x$; therefore $\mathrm{CR}=\mathrm{LR}+\mathrm{CL}$,
or $y=x+\frac{1}{x}$. Now the Origin of OL, or x, being in O; if $x=0$, then CR, or y, will coincide with the Afymptote OG, and therefore will be infinite. If $x=1=O Q$, then $y=\mathrm{BP}=2$. If $x=2=\mathrm{OL}$, then $y=\mathrm{CR}=2 \frac{1}{2}$. And fo of the ref. Alfo proceeding the contrary way, if $x=0$, then y may be fuppofed to coincide with the Afymptote OH , and therefore will be negative and infinite. If $x=\mathrm{OS}=-\mathrm{I}$, then $y=\mathrm{ET}=-2$. If x $=\mathrm{OK}=-2$, then $y=\mathrm{Dv}=-2 \frac{1}{\frac{1}{2}}, \& \mathrm{cc}$. And thus we may purfue, at leaft by Imagination, the correfpondent values of the fiowing quantities x and y, as alfo their contemporary differences, through all their poffible varieties; according to their relation to each other, as exhibited by the Equation $y=x+\frac{1}{x}$.

The Tranfition from hence to Fluxions is fo very eafy, that it may be worth while to proceed a little farther. As the Equation expreffing the relation of the Fluents will give (as now obferved) any of their contemporary parts or difierences; fo if thefe differences are taken very fmall, they will be nearly as the Velocities of the moving Bodies, or points, by which they are defcribed. For Motions continually accelerated or retarded, when perform'd in very fmall fpaces, become nearly equable Motions. But if thofe differences are conceived to be diminifhed in infinitum, fo as from finite differences to become Moments, or vanifhing Quantities, the Motions in them will be perfectly equable, and therefore the Velocities of their Defcription, or the Fluxions of the Fluents, will be accurately as thofe Moments. Suppofe then x, y, z, \&cc. to reprefent Fluents in any Equation, or Equations, and their Fluxions, or Velocities of increafe or decreafe, to be reprefented by $\dot{x}, \dot{y}, \dot{z}$, \&c. and their refpective contemporary Moments to be op, oq, or, \&c. where $p, q, r, \& c$. will be the Exponents of the Proportions of the Moments, and o denotes a vanifhing quantity, as the nature of Moments requires. Then $\dot{x}, \dot{y}, \dot{z}, \& x$ c. will be as op, oq, or, \&cc. that is, as $p, q, r, \& c c$. So that $\dot{x}, \dot{y}, \dot{\tilde{\sim}}$, Scc. may be ufed inftead of $p, q, r, \& c$. in the defignation of the Moments. That is, the fynchronous Moments of $x, y, z, \mathcal{E x}$. may be reprefented by ox, oj , $o \dot{\sim}, ~ \& c c$. Therefore in any Equation the Fluent x may be fuppofed to be increafed by its Moment ox, and the Fluent y by its Moment $o \dot{y}, \& x c$. or $x+o \dot{x}, y+o \dot{y}$, \&cc. may be fubftituted in the Equation inftead of $x, y, \& c$. and yet the Equation will ftill be true, becaufe the Moments are fuppofed to be fynchronous. From which Ope-
ration an Equation will be form'd, which, by due Reduction, murt neceflarily exhibit the relation of the Fluxions.

Thus, for example, if the Equation $y=x+z$ be given, by Subftitution we fhall have $y+o \dot{y}=x+o \dot{x}+z+o \dot{z}$, which, becaufe $y=x+z$, will bccome $c \dot{y}=o \dot{x}+o \dot{z}$, or $\dot{y}=\dot{x}+\dot{z}$, which is the relation of the Fluxions. Here again, if we affume $z=\frac{1}{x}$, or $z x=\mathrm{I}$, by increafing the Fluents by their contemporary Mcments, we fhall have $\overline{z+0} \times \overline{x+0 \dot{x}}=\mathrm{I}$, or $z x+0 \dot{x} x+0 \dot{x} z$ $+00 \dot{x} \dot{x}=\mathrm{I}$. Here becaufe $z x=\mathrm{I}$, 'tis $0 \approx x+0 \dot{z} z+00 \dot{x}=0$, or $\dot{z} x+\dot{x} z+o \dot{z} \dot{x}=0$. But becaufe $o \dot{z} \dot{x}$ is a vanihning Term in refpect of the others, 'tis $\dot{\sim} x+\dot{x} z=0$, or $\dot{z}=-\frac{\dot{x} z}{x}=-\frac{\dot{x}}{x^{2}}$. Now as the Fluxion of z comes out negative, 'tis an indication that as x increafes z will decreafe, and the contrary. Therefore in the Equation $y=x+z$, if $z=\frac{1}{x}$, or if the relation of the Fluents be $y=x+\frac{1}{x}$, then the relation of the Fluxions will be $\dot{y}=\dot{x}$ $-\frac{1}{x^{2}}$.

And as before, from the Equation $y=x+\frac{1}{x}$ we derived the contemporaneous parts, or differences of the Fluents; fo from the Fluxional Equation $\dot{y}=\dot{x}$ - $\frac{\dot{x}}{x^{2}}$ now found, we may obferve the rate of flowing, or the proportion of the Fluxions at different values of the Fluents.

For becaufe it is $\dot{x}: \dot{y}:: 1: 1-\frac{1}{x^{2}}:: x^{2}: x^{2}-1$; when $x=0$, or when the Fhent is but beginning to flow, (confequently when y is infinite,) it will be $\dot{x}: \dot{y}:: \circ:-\mathrm{I}$. That is, the Velocity wherewith x is defcribed is infinitely little in comparifon of the velocity wherewith y is defcribed; and moreover it is infinuated, (becaure of - I ,) that while x increafes by any finite quantity, tho' never fo little, y will decreafe by an infinite quantity at the fame time. This will appear from the infpection of the foregoing Figure. When $x=\mathrm{I}$, (and confequently $y=2$,) then $\dot{x}: \dot{y}:: \mathrm{I}: 0$. That is, x will then flow infinitely fafter than y. The reafon of which is, that y is then at its Limit, or the leaft that it can polfibly be, and therefore in that place it is ftationary for a moment, or its Fluxion is nothing in comparifon of that of x. So in the foregoing Figure, BP is the leaft of all fuch Lines as are reprefented by CR. When $x=2$, (and therefore $y=2 \frac{1}{2}$) it will be $\dot{x}: \dot{y}:: 4: 3$. Or R r 2
the
the Velocity of x is there greater than that of y, in the ratio of 4 to 3 . When $x=3$, then $\dot{x}: \dot{y}:: 9: 8$. And fo on. So that the Velocities or Fluxions conftantly tend towards equality, which they do not attain till $\frac{1}{x}$ (or CL) finally vanifhing, x and y become cqual. And the like may be obferved of the negative values of x and y.

Sect. V. The Refolution of Equations, whether Algebraical or Fluxional, by the affitance of fuperior orders of Fluxions.

ALL the foregoing Extractions (according to a hint of our Author's,) may be perform'd fomething more expeditioully, and without the help of fubfidiary Operations, if we have recourfe to fuperior orders of Fluxions. To fhew this firft by an eafy Inftance.

Let it be required to extract the Cube-root of the Binomial $a^{3}+x^{3}$, or to find the Root y of this Equation $y^{3}=a^{3}+x^{3}$; or rather, for fimplicity-fake, let it be $y^{3}=a^{3}+z$. Then $y=a$, \&c. or the initial Term of y will be a. Taking the Fluxions of this Equation, we thall have $3 \dot{y} y^{2}=\dot{z}=1$, or $\dot{y}=\frac{1}{3} y^{-2}$. But as it is $y=a$, \&c. by fubftitution it will be $\dot{y}=\frac{1}{3} a^{-2}$, \&c. and taking the Fluents, 'tis $y=*+\frac{1}{3} a^{-2} z$, \&c. Here a vacancy is left for the firft Term of y, which we already know to be a. For another Operation take the Fluxions of the Equation $\dot{y}=\frac{1}{3} y^{-2}$; whence $\ddot{y}=-\frac{2}{3} y y^{-3}=-\frac{2}{9} y^{-5}$. Then becaufe $y=a$, \&c. 'tis $\ddot{y}=-\frac{2}{9} a^{-5}$, \& c . and taking the Fluents, 'tis $\dot{y}=*$ $\frac{3}{3} a^{-5} z$, \&c. and taking the Fluents again, 'tis $y=* *-\frac{8}{9} a^{-5} z^{2}$, \&c. Here two vacancies are to be left for the two firft Terms of y, which are already known. For the next Operation take the Fluxions of the Equation $\ddot{y}=-\frac{2}{9} y^{-5}$, that is, $\ddot{y}=+\frac{10}{9} \dot{y} y^{-6}=$ $+\frac{1}{2} \circ y^{-8}$. Or becaufe $y=a, \& c$.'tis $\ddot{y}=\frac{1}{2} \frac{0}{7} a^{-8}, \& c$. Then taking the Fluents, 'tis ${ }^{\prime} y=* \frac{1}{2} \frac{0}{7} a^{-8} z$, \& \&c. $\dot{y}=* * \frac{5}{2} a^{-8} z^{2}$, \& cc. and $y=* * * \frac{5}{8} a^{-8} z^{3}, \& x$. Again, for another Operation take the Fluxions of the Equation $\ddot{y}=\frac{1}{2} \frac{0}{7} y^{-8}$; whence $\ddot{y}=-\frac{8}{3} \frac{0}{7} y y^{-9}$ $=-\frac{80}{8} \frac{0}{1} y^{-11}$. Or becaufe $y=a$, \&c. 'tis $\ddot{y}=-\frac{8}{8} \frac{0}{1} a^{-11}, \& c c$. Then taking the Fluents, $\ddot{y}=*-\frac{3}{5} \circ a^{-11} r, \& c . \ddot{y}=* *-$
$\frac{40}{8} a^{-11} z^{\frac{1}{2}}$, abc. $\dot{y}=* * *-\frac{4^{0}}{\frac{1}{4} \frac{3}{3}} a^{-11} z^{3}$, \&cc. and $y=* * * *-$ $\frac{1+0}{\frac{1}{7} \overline{3} a^{-r 1} z^{4}}$, \&cc. And fo we may go on as far as we pleafe. We have therefore found at left, that $y=a+\frac{z}{3 a^{2}}-\frac{z^{2}}{9 a^{5}}+\frac{5 z^{3}}{81 a^{8}}-$ $\frac{10 a^{4}}{24 a^{12}}$, Sic. or for \approx writing x^{3}, 'tic $\sqrt[3]{a^{3}+x^{3}}=\dot{a}+\frac{\rho^{3}}{3 a^{2}}-\frac{x^{6}}{9 a^{5}}$ $+\frac{5 x^{9}}{81 a^{8}}-\frac{\mathrm{r} 0 x^{12}}{2+33^{11}}, \delta x c$.

Or univerfally, if we would refolve $\left.\overline{a+x}\right|^{m}$ into an equivalent infinite Series, make $y=\left.\overline{a+x}\right|^{m}$, and we hall have a^{m} for the firft Term of the Series y, or it will be $y=a^{m}$, \&c. Then because $y^{\frac{1}{m}}=a+x$, taking the Fluxions we fall have $\frac{1}{m} \dot{y} y^{\frac{1}{m}-1}=$ $\dot{x}=\mathrm{I}$, or $\dot{y}=m y^{1-\frac{1}{m}}$. But because it is $y=a^{m}$, \&cc. it will be $\dot{y}=m a^{m-1}, \& c$. and now taking the Fluent, 'is $y=* m e^{m-1} x$, \&c. Again, because it is $\dot{y}=m y^{\frac{1}{m}}$, taking the Fluxions it will be $\ddot{y}=m-\frac{1 \dot{y}}{y} y^{-\frac{1}{m}}=m \times \overline{m-r} y^{1-\frac{2}{m}}$; and becaufe $y=a^{m}, \& c c$. 'ti $\ddot{y}=m \times \overline{m-1} a^{m-2}$, \&cc. And taking the Fluents, 'ti $\dot{y}=*$ $m \times \overline{m-1} a^{m-2} x, \& \mathrm{c}$. and therefore $y=* * m \times \frac{m-1}{2} a^{m-2} x^{2}, \& \mathrm{cc}$. Again, because it is $\ddot{y}=m \times \overline{m-1} y^{1-\frac{2}{m}}$, taking the Fluxions it
will be $\ddot{y}=\overline{m-1} \times \overline{m-2 j y} \bar{m}^{-\frac{2}{m}}=m \times m-1 \times \frac{1}{m-2 y^{1-\frac{3}{m}}}$; and becaufe $y=a^{m}$, \&c. 'ti $\dot{y}=m \times \overline{m-1} \times \overline{m-2} a^{m-2}, \& c$. And taking the Fluents, 'ti $y=* m \times \overline{m-1} \times \overline{m-2 a^{m}}{ }^{\prime} x$, \&c. $\dot{y}=* * m \times \frac{m-1}{2} \times \overline{m-2} a^{m-3} x^{3}, \& c c$. and $y=* * * m \times \frac{m-1}{2}$ $\times \frac{m-2}{3} a^{m-3} x^{-3}$, \&c. And fo we might proceed as far as we pleafe, if the Law of Continuation had not already been fufficiently manifeft. So that we hall have here $\left.\overline{a+x}\right|^{m}=a^{m}+m a^{m-1} x+$ $m \times \frac{m-1}{2} a^{m-2} x^{2}+m \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} x^{3}+m \times \frac{m-1}{2} \times \frac{m-2}{3} \times$ $\frac{m-3}{4} a^{m-4} x^{-4}$, \& cc.
${ }^{4}$ This is a famous Theorem of our Author's, tho' difcover'd by him after a very different manner of Inveftigation, or rather by Induction. It is commonly known by the name of his Binomial Binomial Theorem Theorem, because by its affiftance any Binomial, as $a+x$, may Sew wi ard 160 .for the be railed to any Power at pleafure, or any Root of it may be extracted. And it is obvious, that when m is interpreted by any in-- replication of the Indies and unuo. - Io also Trennings Appundivp 215° and the Macelaurins algebra .35:

310

The Method of Fluxions,

teger affirmative Number, the Series will break off, and become finite, at a number of Terms denominated by m. But in all other cafes it will be an infinite Series, which will converge when x is lefs than a.

Indeed it can hardly be faid, that this, or any other that is derived from the Method of Fluxions, is a ftrict Inveftigation of this Theorem. Becaufe that Method itfelf is originally derived from the Method of raifing Powers, at leaft integral Powers, and previoully fuppofes the knowledge of the Uncia, or the numeral Coefficients. However it may anfwer the intention, of being a proper Example of this Method of Extraction, which is all that is neceffary here.

There is another Theorem for this purpofe, which I found many years ago, and then communicated it to my ingenious Friend Mr. A. de Moivre, who liked it fo well as to infert it in a Mathematical Treatife he was then publifhing. I fhall here give the Reader its Invertigation, in the fame manner it was found.

Let us fuppofe $\left.\overline{a+x}\right|^{m}=a^{m}+p$, and that $a+x=z$, " and therefore $\dot{\sim}=\dot{x}=1$. Now becaufe $z^{m}=a^{m}+p$, it will be $\dot{p}=m z^{m-r}=\frac{m z^{m}}{z}$; where for \approx^{m} writing its value $a^{m}+p$, we Alall have $\dot{p}=\frac{m a^{m}}{z}+\frac{m p}{z}$. Now if we make $p=\frac{m a^{m} x}{z}+q$, it will be $\dot{p}=\frac{m a^{m}}{\approx}-\frac{m a^{m} x}{z^{2}}+\dot{q}$. And comparing thefe two values of \dot{p}, we fhall have $\dot{q}=\frac{m a^{m} x}{z^{2}}+\frac{m p}{z}$; where if for p we write its value as above, it will be $\dot{q}=\frac{m a^{m} x}{z^{2}}+\frac{m^{2} a^{m} x}{z^{2}}+\frac{m q}{z}$, or $\dot{q}=m \times$ $\overline{m+1} \times \frac{a^{m} x}{z^{2}}+\frac{m q}{z}$; make $q=m \times \frac{m+1}{2} \times \frac{a^{m x^{2}}}{z^{2}}+r$; therefore $y=m \times \overline{m+1} \times \frac{a^{m} x}{z^{2}}-m \times \overline{m+1} \times \frac{a^{m} x^{z}}{z^{3}}+\dot{r}$. From which two values of \dot{q} we fhall have $\dot{r}=m \times \overline{m+1} \times \frac{a^{m} x^{2}}{z^{3}}+\frac{m p}{z}$. And for q fubffituting its value, it will be $\dot{r}=m \times \overline{m+1} \times \frac{a^{m} x^{2}}{z^{3}}+$ $m^{2} \times \frac{m+1}{2} \times \frac{n^{m} x^{2}}{z^{3}}+\frac{m r}{z}$. Or $\dot{r}=m \times \frac{m+1}{2} \times \frac{m+2}{1} \times \frac{a^{m} x^{2}}{z^{3}}+\frac{m r}{z}$. Make $r=m \times \frac{m+1}{2} \times \frac{m+2}{3} \times \frac{a^{m} x^{3}}{z^{j}}+s$; then, \& c . So that we
mall have $\overline{a+\left.x\right|^{m}}=a^{m}+m \times \frac{a^{m} x}{a+x}+m \times \frac{m+1}{2} \frac{a^{m} x^{2}}{a+\left.x\right|^{2}}+m \times$ $\frac{m+1}{2} \times \frac{m+2}{3} \times \frac{a^{m \times 3}}{a-x^{3}}, \& c$.

Now this Series will ftop of its own accord, at a finite number of Terms, when m is any integer and negative Number ; that is, when the Reciprocal of any Power of a Binomial is to be found. But in all other cafes we fhall have an infinite converging Series for the Power or Root required, which will always converge when a and x have the fame Sign ; becaufe the Root of the Scale, or the converging quantity, is $\frac{x}{n+x}$, which is always lefs than Unity.

By comparing thefe two Series together, or by collecting from each the common quantity $\frac{\left.\overline{a+x}\right|^{n \prime}-a^{m}}{m a^{m n} x}$, we flall have the two equivalent Series $\frac{1}{a}+\frac{m-1}{2} \times \frac{x}{a^{2}}+\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{x^{2}}{a^{3}}$, scc. $=\frac{1}{a+x}$ $+\frac{m+1}{2} \times \frac{x}{\overline{a+x 1^{2}}}+\frac{m+1}{2} \times \frac{m+2}{3} \times \frac{x^{2}}{\overline{a+x 1^{3}}}$, \&c. from whence we might derive an infinite number of Numeral Converging Series, not inelegant, which would be proper to explain and illuftrate the nature of Convergency in general, as has been attempted in the former part of this work. For if we affume fuch a value of m as will make either of the Series become finite, the other Series will exhibit the quantity that arifes by an Approximation ad infinituin. And then a and x may be afterwards determined at pleafure.

As another Example of this Method, we fhall fhew (according to promife) how to derive Mr. de Moivre's elegant Theorem; for raifing an Infinitinomial to any indeterminate Power, or for extracting any Root of the fame. The way how it was derived from the abftract confideration of the nature and genefis of Powers, (which indeed is the only legitimate method of Inveftigation in the prefent cafe,) and the Law of Continuation, have been long ago communicated and demonftrated by the Author, in the Philofophical Tranfactions, $N^{\circ} 230$. Yet for the dignity of the Problem, and the better to illuftrate the prefent Method of Extraction of Roots, I fhall deduce it here as follows.

Let us affume the Equation $\overline{a+b z+c z^{2}+d z^{3}+e z^{4}, \& c . \mid}{ }^{m}$ $=y$, where the value of y is to be found by an infinite Series, of which the firft Term is already known to be a^{m}, or it is $y=u^{m}$, \&c. Make $v=a+b z+c z^{2}+d z^{3}+e z^{4}$, \&cc. and putting $i=1$, and taking the Fluxions, we thall have $\dot{v}=6+202+$ $3 d w^{2}$.
$3 d z^{2}+4 e z^{3}$, \&uc. Then becaufe $y=v^{m m}$, it is $\dot{y}=m v^{2 m-s}$, where if we make $v=a$, \&c. and $\dot{v}=b$, \&c. we fhall have $\dot{y}=$ $m a^{m-1} b, \& c$. and taking the Fluents, it will be $y=* m a^{m-1} b z$, \&c.
For another Operation, becaufe $\dot{y}=m \dot{v} v^{m-1}$, it is $\ddot{y}=m v^{m-1}$ $+m \times \overline{m-1} v^{2} v^{m-2}$. And becaufe $v=2 c+6 d z+12 e z^{2}$, $\& c$. for v, \dot{v}, and \ddot{v} fubftituting their values $a, \& c, b, \& c$. and $2 c, \& c$. refpectively, we fhall have $y=2 m c a^{m-1}+m \times \overline{m-1} b^{2} a^{m-2}, \delta \mathrm{cc}$. and taking the Fluents $\dot{y}=* 2 m c a^{m-1} z+m \times \overline{m-1} b^{2} a^{m-2} z$, \&cc. and taking the Fluents again, $y=* * m c a^{m-1} z^{2}+m \times \frac{m-1}{2} b^{2} a^{m-2} z^{2}$, \&x.

For another Operation, becaufe $\ddot{y}=m \ddot{v} v^{m-1}+m \times \overline{m-1} \dot{v}^{2} v^{m-2}$, 'tis $\therefore \dot{y}=\dot{v^{m-1}}+3 m \times \overline{m-1} v^{m-2} \dot{v} \dot{v}+m \times \overline{m-1} \times \overline{m-2} v^{m-3} v^{3}$. And becaufe $\dot{\ddot{v}}=6 d+24 c z$, \&c. for $v, \dot{v}, \ddot{v}, \dot{\ddot{v}}$, fubftituting a, \&cc. b, \&c. $2 c, \& c .6 d$, \&cc. we fhall have $\ddot{y}=6 m d a^{m-1}+6 m \times$ $\overline{m-1} b c a^{m-2}+m \times \overline{m-1} \times \overline{m-2} b^{3} a^{m-3}$, \&cc. And taking the Fluents it will be $\ddot{y}=* 6 m d a^{m-1} z+6 m \times \overline{m-1} b c a^{m-2} z+m \times$ $\overline{m-1} \times \overline{m-2} b^{3} a^{m-3} z, \& c . \dot{y}=* * 3 m d a^{m-1} z^{2}+3 m \times \overline{m-1} b c a^{m-2} z^{z}$. $+m \times \frac{m-1}{2} \times \overline{m-2 b^{3}} a^{m-3} z^{2}, \& c$. and $y=* * * m d a^{m-1} z^{3}+m \times$ $\frac{m-1}{1} b c a^{m-2} z^{3}+m \times \frac{m-1}{2} \times \frac{m-2}{3} b^{3} a^{m-3} z^{3}$, \& cc. And fo on in infinitum. We fhall therefore have $\overline{a+b z+c z^{2}+d z^{3}+e z^{4}, \& c .\left.\right|^{m}}=$ $(y=) a^{m}+m a^{m-1} b z+m \times \frac{m-1}{2} a^{m-2} b^{2} \times z^{2}+m \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3} \times z^{3}, \mathcal{J}^{2} c$.

$$
\begin{array}{ll}
+m a^{m-1} c & +m \times \frac{m-1}{1} a^{m-2} b c \\
& +m a^{m-1} d
\end{array}
$$

And if the whole be multiply'd by z^{m}, and continued to a due length, it will have the form of Mr. de Moivre's Theorem.

The Roots of all Algebraical or Fluential Equations may be extracted by this Method. For an Example let us take the Cubick Equation $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$, fo often before refolved, in which $y=a, \& c$. Then taking the Fluxions, and making $\dot{x}=\mathrm{I}$, we fhall have $3 \dot{y} y^{2}+a y+a x \dot{y}+a^{2} \dot{y}-3 x^{2}=0$. Here if for y we fubftitute $a, \& c$. we fhall have $4 a^{2} \dot{y}+a^{2}+a x \dot{y}-3 x^{2}$, $\& c .=0$, or $\dot{y}=\frac{-a^{2}+3 x^{2}, \vartheta^{2} c .}{4 a^{2}+a x, \xi_{c} c}=\frac{-a^{2}}{4 a^{2}}, \& c .=-\frac{1}{4}, \& c c$. And taking the Fluents, $y=*-\frac{1}{4} x$, $\mathbb{E c c}$. Then taking the Fluxions
again of the laft Equation, we fhall have $3 \ddot{y} y^{2}+6 \dot{y}^{2} y+2 a \dot{y}+a x y$ $+a^{2} y-6 x=0$. Where if we make $y=a$, \&c. and $\dot{y}=-\frac{1}{4}$, $\& c$. we thall have $j=\frac{-3 a+\frac{1}{2} a, \varepsilon^{\circ} c .}{4 a^{2}, \underbrace{0} c}=\frac{1}{32 a}$, \&cc. and therefore $\dot{y}=*+\frac{x}{32 a}$, \&c. and $y=* *+\frac{x^{2}}{6+a}$, \&c. Again, $\dot{3} \dot{y} y^{3}+18 \ddot{j y y}$ $+6 \dot{y}^{3}+3 \ddot{a}+a x \dot{y}+a^{2} y-6=0$. Make $y=a, \& c, \dot{y}=$ - $\frac{1}{4}, \& \mathrm{c}$. and $\ddot{y}=\frac{1}{32 a}, \& c$. then $\dot{y}=\frac{9+\frac{0}{\pi}-\frac{3}{\gamma_{2}}+6}{4 a^{2}}, \& \mathrm{c} .=$ $\frac{393}{256 a^{2}}, \& c$. and therefore $\ddot{y}=* \frac{392 x}{256 a^{2}}, \& c . \dot{y}=* * \frac{393 x^{2}}{512 a^{2}}, ~ \& c c$. and $y=* * * \frac{131 x^{3}}{512 a^{2}}$, \&cc. Again, $3 y y^{2}+24 \dot{y} \dot{y} y+18 \ddot{j}^{2} y+36 \ddot{y}^{2}$ $+4 \ddot{a} y+a x \ddot{y}+a^{2} \ddot{y}=0$. Make $y=a, \delta$ c. $\dot{y}=-\frac{1}{4}, \&$ c. $\ddot{y}=$ $\frac{1}{32 a}, \& c$. and $\dot{y}=\frac{393}{256 a^{2}}, \& c$. then $\ddot{y}=-\frac{24 \dot{4} \dot{y}+1 \ddot{y}^{2} v+36 i i^{2}+4 a \dot{y}}{3 y^{2}+a^{2}, \dot{v}}$ $=\frac{1527}{204^{8 a^{3}}}$, \&c. and $\ddot{y}=* \frac{1527 x}{204^{8 a 3}}$, \&c. $\ddot{y}=* * \frac{1527 x^{2}}{4096 a^{3}}, \& \mathrm{c} . \dot{y}=* * *$ $\frac{509 x^{3}}{4096 \alpha^{3}}, \& \mathrm{c}$. and $y=* * * * \frac{509 x^{4}}{163^{8} 4^{3}}, \& \mathrm{cc}$. And fo on as far as we pleafe. Therefore the Root is $y=a-\frac{1}{4} x+\frac{x^{2}}{5+a}+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{163^{8}+a^{3}}, \& \mathrm{c}$.

The Series for the Root, when found by this Method, muft always have its Powers afcending ; but if we defire likewife to find a Series with defcending Powers, it may be done by this eafy artifice. As in the prefent Equation $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$, we may conceive x to be a conftant quantity, and a to be a flowing quantity ; or rather, to prevent a confufion of Ideas, we may change a into x, and x into a, and then the Equation will be $y^{3}+a x y+$ $x^{2} y-a^{3}-2 x^{3}=0$. In this we hall have $y=a$, \&c. and taking the Fluxions, 'tis $3 \dot{y} y^{2}+a y+a x \dot{y}+2 x y+x^{2} \dot{y}-6 x^{2}=0$, or $\dot{y}=\frac{-a y-2 x y+6 x^{2}}{3 y^{2}+a x+x^{2}}$. But becaufe $y=a$, \&c. 'tis $\dot{y}=\frac{-a a}{3 a a}, \& c c$. $=-\frac{1}{3}$, \&c. and therefore $y=:-\frac{1}{3} x$, \&xc. Again taking the Fluxions 'tis $3 \ddot{y} y^{2}+6 \dot{y}^{2} y+2 a \dot{y}+a x \ddot{y}+2 y+4 x \dot{y}+x^{2} \ddot{y}-12 x=0$, or $\ddot{y}=\frac{-6 j^{2} y-2 a y-2 y-4 x y+12 x}{3 y^{2}+a x+x^{2}}=\frac{-6 y^{2} y-2 a y-2 y}{3 y^{2}}$, \&c. Or making $y=a$, \&cc. and $\dot{y}=-\frac{1}{3}$, \&c. 'tis $\bar{y}=\frac{-\frac{2}{3} a+\frac{2}{3} a-2 a}{3 a^{2}}$, \&cc. $=-\frac{2}{3 a}$, \&xc. and $\dot{y}=*-\frac{2 x}{3 a}$, \&xc. and $y=* *-\frac{x^{2}}{3 a}, \& c c$. Again it is $3 \dot{y} y^{2}+18 \ddot{y} \dot{y} y+6 \dot{y}^{3}+3 \ddot{a}+a \dot{y} \dot{y}+6 \dot{y}+6 x \ddot{y}+x^{2} \dot{y}$ S C - 12

The Method of Fluxions,

$-12=0$, or $\dot{y}=\frac{-18 \dot{y} \dot{y} \dot{y}-6 i^{3}-3 a \dot{y}-6 \dot{y}+12}{3 y^{2}}, 8 \mathrm{c}$. $=$ (by making $y=a, \& x c . \dot{y}=-\frac{1}{3}, \& c$. and $\left.\ddot{y}=-\frac{2}{3 a}, \& c.\right) \frac{-4+\frac{2}{9}+2+2+12}{3 a^{2}}$, $\& \mathrm{c} .=\frac{110}{27 a^{2}}, \& \mathrm{c}$. 'Then taking the Fluents, $\ddot{y}=* \frac{110 x}{27 a^{2}}$, \&c. $\dot{y}=* * \frac{55 x^{2}}{27 a^{2}}, \& c$. and $y=* * * \frac{55 x^{3}}{81 a^{2}}$, \&c. And fo on. 'Therefore we thall have $y=a-\frac{1}{3} x-\frac{x^{2}}{3^{2}}+\frac{5 x^{3}}{81^{2}}$, \&xc. Or now we may again change x into a, and a into x; then it will be $y=x$ $-\frac{1}{3} a-\frac{a^{2}}{3 x}+\frac{5 a^{3}}{81 x^{2}}$, \&cc. for the Root of the given Equation, as was found before, pag. $216,8 \mathrm{cc}$.

Alfo in the Solution of Fluxional Equations, we may proceed in the fame manner. As if the given Equation were $a^{2} \dot{y}-a^{2} \dot{x}+x^{2} \dot{y}$ $=0$, (in which, if the Radius of a Circle be reprefented by a, and if y be any Arch of the fame, the correfponding Tangent will be reprefented by x;) let it be required to extract the Root y out of this Equation, or to exprefs it by a Series compofed of the Powers of a and x. Make $\dot{x}=1$, then the Equation will be $a^{2} \dot{y}-a^{2}+$ $x^{2} \dot{y}=0$. Here becaufe $\dot{y}=\frac{a^{2}}{a^{2}+x^{2}}=1$, \&c. taking the Fluents it will be $y=* x$, \&cc. Then taking the Fluxions of this Equation, we fhall have $a^{2} \ddot{y}+2 x \dot{y}+x^{2} \ddot{y}=0$, or $\ddot{y}=-\frac{2 x \dot{y}}{a^{2}+x^{2}}$. But becaufe we are to have a conftant quantity for the firf Term of \ddot{y}, we may fuppofe $\ddot{y}=\frac{0-2 x y}{a^{2}+x^{2}}=0, \& c$. Then taking the Fluents 'tis $\dot{y}=* \mathrm{o}, \mathbb{\&} \mathrm{c}$. and $y=* * \mathrm{o}, \& \mathrm{c}$. Then taking the Fluxions again, 'tis $\dot{\ddot{2}} \dot{y}+2 \dot{y}+4 x \ddot{y}+x^{2} \dot{y}=0$, or $\ddot{y}=\frac{-2 \dot{y}-4 x \ddot{y}}{a^{2}+x^{2}}$. Here if for \dot{y} and \ddot{y} we write their values $\mathrm{I}, \& \in \mathrm{c}$. and O , \&c. we fhall have $\ddot{y}=-\frac{2}{a^{2}}, \& c$. whence $\ddot{y}=*-\frac{2 r}{a^{2}}, \& k c . \dot{y}=* *-\frac{x^{2}}{a^{2}}, \& c$. and $y=* * *-\frac{x^{3}}{3 a^{2}}$, \&cc. Taking the Fluxions again, 'tis $a^{2}: \ddot{y}+6 \ddot{y}+6 x \dot{y}+x^{2} \dot{y}=0$, or $: \ddot{y}=\frac{-6 \ddot{y}-6 \dot{x}}{a^{2}+x^{2}}=0$, $\& c$. Therefore $\ddot{y}=* 0, \& \mathrm{c} . \ddot{y}=* * 0, \& \mathrm{c} . \dot{y}=* * * 0, \& \mathrm{c} . y={ }_{* * *}$ Q, \&cc, Again, $a^{5} \dot{y}+12 \dot{y}+8 x \dot{y}+x^{3} \dot{y}=0$, or $\dot{y}=\frac{-12 \dot{y}-8 x \dot{y}}{a^{2}+x^{2}}$
$=+\frac{24}{a^{4}}, \delta \varepsilon c$. Then $\ddot{y}=*+\frac{24 x}{a^{4}}, \delta \varepsilon c . \ddot{y}=* *+\frac{12 x^{2}}{a 4}, \delta \delta c$. $y=* * *+\frac{4 x^{3}}{a^{4}}, \mathrm{scc}, \dot{y}=* * * *+\frac{x^{4}}{a^{4}}, \mathrm{sc}$. and $y=* * * *$ $+\frac{x^{5}}{5^{4}}$, \&cc. Again, $a^{2} \dot{6}+20 \dot{y}^{4}+10 x^{5} \dot{y}^{6}+x^{2} \dot{y}^{6}=0$, whence $y=$ $* * * * * * 0, \& \mathrm{cc}$. Again, $a^{2} y^{7}+30 \dot{y}^{5}+12 x \dot{y}^{6}+x^{2} \bar{y}=0$, or $\bar{y}=$ $\frac{-3{ }^{5}-12 \times j^{6}}{a^{2}+x^{2}}=-30 \times 24 a^{-6}, \& \mathrm{cc}$. Then $\dot{6}=*-\frac{24 \times 30 x}{a^{6}}$, \&c. $\stackrel{5}{y}=* *-\frac{12 \times 30 x^{2}}{a^{6}}, \&<., \stackrel{4}{y}=* * *-\frac{4 \times 30 x^{3}}{a^{6}}, \& \mathbb{y} . \dot{y}=* * * *$ $-\frac{30 x 4}{a^{6}}$, scc. $\ddot{y}=* * * * *-\frac{6 \times 5}{a^{6}}$, sc. $\dot{y}=* * * * * *-\frac{x^{6}}{a^{6}}$, \&c. and $y=* * * * * * *-\frac{x^{7}}{7 a^{6}}$, \&c. And fo on. So that we have here $y=* x+0 x^{2}-\frac{x^{3}}{3 a^{2}}+0 x^{4}+\frac{x^{5}}{54^{4}}, \& c$. that is, $y=$ $x-\frac{{ }_{x} x^{3}}{3 a^{2}}+\frac{x^{5}}{5 a^{4}}-\frac{x^{7}}{5 a^{6}}, \& c$.
This Example is only to fhew the univerfality of this Method, and how we are to proceed in other like cares ; for as to the Equation itfelf, it might have been refolved much more fimply and expeditioufly, in the following manner. Becaufe $\dot{y}=\frac{a^{2}}{a^{2}+x^{2}}$, by Divifion it will be $\dot{y}=\mathrm{I}-\frac{x^{2}}{a^{2}}+\frac{x_{4}}{a^{4}}-\frac{x^{6}}{a^{6}}+\frac{x^{8}}{a^{8}}$, \&c. And taking the Fluents, $y=x-\frac{x^{3}}{3 a^{2}}+\frac{x^{5}}{5 a^{4}}-\frac{x^{7}}{7 a^{6}}+\frac{x^{8}}{9 a^{8}}, \& c$ c.

In the fame Equation $a^{2} \dot{y}-a^{2} \dot{x}+x^{2} \dot{y}=0$, if it were requir'd to exprefs x by y, (the Tangent by the Arch,) or if x were made the Relate, and y the Correlate, we might proceed thus. Make $\dot{y}=1$, then $a_{-}^{2}-a^{2} \dot{x}+x^{2}=0$, or $\dot{x}=1+\frac{x^{2}}{a^{2}}=1$, $\&<$. Then $x=* y$, \&ee. And taking the Fluxions, 'tis $\ddot{x}=\frac{2 \times x}{a^{2}}=$ $\frac{2 x}{a^{2}}, \delta \varepsilon c .=0+\frac{2 x}{a^{2}}, \& c c$. whence $\dot{x}=* 0, \&<c$. and $x=* * 0$, \& cc. So that the Terms of this Series will be alternately deficient, and therefore we need not compute them. Taking the Fluxions again, 'tis $\ddot{x}=\frac{2 \dot{x}^{2}}{a^{2}}+\frac{2 x \ddot{x}}{a^{2}}=\frac{2}{a^{2}}, \& \delta c$. Therefore $\ddot{x}=* \frac{2 y}{a^{2}}, \delta x c$. $\dot{x}=* * \frac{y^{2}}{a^{2}}$, \&cc. and $x=* * * \frac{y^{3}}{3 a^{2}}, \&<c$. Again, $\ddot{x}=\frac{6 \cdot \dot{x}}{a^{2}}+\frac{2 x \dot{x}}{a^{2}}$,
and again, $\stackrel{\stackrel{5}{x}}{=}=\frac{6 \dot{x}^{2}}{a^{2}}+\frac{8 \dot{x} \dot{x}}{a^{2}}+\frac{2 \dot{x} \dot{x}}{a^{2}}$. Subftituting 1 , \&c. and $\frac{2}{a^{2}}$. \&cc. for \dot{x} and \dot{x}, and alfo o , $\delta \mathrm{cc}$. for \ddot{x} and \ddot{x}, it will be $\stackrel{5}{x}=$ $\frac{16}{a^{4}}, \& c c$. whence $\ddot{x}=* \frac{16 y}{a 4}, \& c \mathrm{c} . \dot{x}=* * \frac{8 r^{2}}{44}, \&<c . \ddot{x}=* * *$ $\frac{8.3}{3 a^{2}}, \delta<c . \dot{x}=* * * * \frac{22^{4}}{3 \alpha^{4}}, \&<c$. and $x=* * * * * \frac{215}{15 a^{4}}$, \&c.
 Here for \dot{x}, \dot{x}, and $\stackrel{5}{x}$ writing i, \&cc. $\frac{2}{a^{2}}, ~ \& c$ c. and $\frac{16}{a^{4}}$, \&cc. refpectively, 'tis $\overline{7}_{x}^{x}=\frac{80+12 \times 16}{a^{6}}, \delta \mathrm{c} .=\frac{272}{a^{6}}, \& \mathrm{c}$. Then $\stackrel{6}{x}=$, $\frac{272 y}{a^{6}}, \&<c . \stackrel{5}{x}=* * \frac{1361^{2}}{a^{6}}, \& \mathrm{cc}, \stackrel{4}{x}=* * * \frac{1366^{3}}{a^{6}}, \delta \mathrm{cc} . \stackrel{\ddot{x}}{x}=* * * *$ $\frac{345^{4}}{3 a^{6}}, \& \mathrm{cc} . \ddot{x}=* * * * * \frac{34,5}{15 a^{6}}, \& \mathrm{cc} . \dot{x}=* * * * * * \frac{175^{6}}{45 a^{6}}, 8 \mathrm{cc}$. and $\stackrel{x}{x}=* * * * * * * \frac{1,7^{7}}{315^{a}}, \quad \& \mathrm{c}$. That is, $x=y+\frac{y^{3}}{3 a^{2}}+\frac{2,5}{15 a^{4}}+$ $\frac{17 y^{9}}{3 \cdot 5 a^{6}}, \& c$.
For another Example, let us take the Equation $a^{2} j^{2}$ - $x^{2} y^{2}$ $a^{2} \dot{x}^{3}=0$, (in which, if the Radius of a Circle be denoted by a, and if y be any Arch of the fame, then the correfponding rightSine will be denoted by x;) from which we are to extract the Root y. Make $\dot{x}=\mathrm{r}$, then it will be $a^{2} \dot{y}^{2}-x^{2} \dot{y}^{2}=a^{2}$, or $\dot{y}^{2}=\frac{a^{2}}{a^{2}-x^{2}}$ $=\mathrm{I}, \& \mathrm{c}$. or. $\dot{y}=\mathrm{I}, \& \delta c$. and therefore $y=* x$, \&c. Taking the Fluxions we fhall have $2 a^{2} \dot{y} \ddot{y}-2 x \dot{y}^{2}-2 x^{2} \dot{y} y=0$, or $a^{2} \ddot{y}-$ $x \dot{y}-x^{2} \ddot{y}=0$, or $\ddot{y}=\frac{x \dot{j}}{a^{2}-x^{2}}=0, \& c c$. And taking the Fluxions again, 'tis $a^{2} \dot{y}-\dot{y}-3 x \dot{y}-x^{2} \dot{y}=0$, or $\ddot{y}=\frac{\dot{y}+3 \cdot \ddot{y}}{a^{2}-x^{2}}=\frac{1}{a^{2}}$, \& cc. Therefore $\ddot{y}=* \frac{x}{a^{2}}, \& \dot{c} c . j=* * \frac{x^{2}}{2 a^{2}}, \& c \mathrm{c}$. and $y=* * * \frac{\frac{x}{3}^{6 a^{2}}}{}$, \&rc. Then $a^{2} y-4 \ddot{y}-5 x \dot{y}-x^{2} \dot{y}=0$, and again $a^{2} \dot{y}-\ddot{9} \ddot{y}$ $7^{x \ddot{y}}-x^{2}{ }^{5} \dot{y}=0$, or $\dot{5}=\frac{\ddot{q}+7 \bar{x}}{a^{2}-x^{2}}=\frac{\ddot{y}}{a^{2}}, 8 x c=\frac{9}{a^{4}}, \& c c$. There fore $\ddot{y}=* \frac{9 x}{a 4}, \& c \mathrm{c}, \ddot{y}=* * \frac{9 x^{2}}{2 a 4}, \&<c, \ddot{y}=* * \frac{3 x^{3}}{2 a 4}, \delta \delta c . \dot{y}=$
$* * * * \frac{2 \times 4}{8,4}$, \&cc. and $y=* * * * * \frac{3 *}{4004}$, \&cc. Taking the Fluxions again, 'tic $a^{2} \dot{y}-10 y-9 x^{5}-x^{2} j^{6}=0$, and again, $a^{2}{ }^{2}$

 $\stackrel{4}{y}=* * * \frac{25 \times 3}{2 a^{6}} x^{3}, \& c \mathrm{c} . \ddot{y}=* * * * \frac{25 \times 3}{8 a^{6}} x^{4}, \delta \mathrm{cc} . \ddot{y}=* * * * *$ $\frac{5 \times 3}{8 a^{6}} x^{5}, \&<c . j=* * * * * * \frac{52^{6}}{16 a^{6}}, \& c$. and $y=* * * * * *$ $\frac{5 \times 7}{112 a^{6}}, \& c c$. Or $y=x+\frac{x^{3}}{6 a^{2}}+\frac{3 x^{5}}{40 a 4}+\frac{5 x^{7}}{112 a^{6}}, 8 \mathrm{cc}$.

If we were required to extract the Root x out of the fame Equiaion, $a^{2} j^{2}-x^{2} j^{2}-a^{2} \dot{x}^{2}=0$, (or to express the Sine by the Arch,) put $\dot{y}=1$, then $a^{2}-x^{2}-a^{2} \dot{x}^{2}=0$, or $\dot{x}^{2}=1-$ $\frac{x^{2}}{a^{2}}$, and therefore $\dot{x}=\mathrm{I}, \& \mathrm{c}$. and $x=* y, \& c$. Taking the Fluxions 'ti $-2 \dot{x} \dot{x}-2 a^{2} \dot{x} \ddot{x}=0$, or $\ddot{x}=-\frac{x}{a^{2}}=0$, \&cc. Therefore $\dot{x}=* 0, \& c c, x=* * 0, \& c$. Taking the Fluxions again, 'is $\dot{x}=-\frac{\dot{x}}{a^{2}}=-\frac{1}{a^{2}}, \& c$. Thence $\ddot{x}=*-\frac{y}{a^{2}}, \& c$. $\dot{x}=* *-\frac{y^{2}}{2 a^{2}}, \& \mathrm{cc}$. and $x=* * *-\frac{3}{6 a^{2}}, \& c \mathrm{c}$. Again, $\bar{x}=-\frac{\ddot{x}}{a^{2}}$, and $\stackrel{5}{x}=-\frac{\ddot{x}}{a^{2}}=+\frac{1}{a 4}, \& c$. Therefore $\ddot{\bar{x}}=\cdot \frac{y}{a^{4}}, \& c \mathrm{c} . \ddot{x}=$ $\cdots \frac{y^{2}}{2 a 4}, \& c \mathrm{c}, \ddot{x}=* * \frac{\frac{j}{3}^{3}}{6 a 4}, \&<c . \dot{x}=* * * \frac{54}{24 a^{4}}, \& \delta c$, and x $=* \cdots * \frac{y^{5}}{120 a^{4}}, \& c c$ Again, $\frac{6}{x}=-\frac{\tilde{x}}{a^{2}}$, and $\frac{7}{x}=-\frac{\frac{5}{x}}{a^{2}}$ $=-\frac{1}{a^{6}}, \&<c$. Therefore $\stackrel{6}{\dot{x}}=\cdots-\frac{y}{a^{6}}, \stackrel{5}{x}=\cdots-\frac{y^{2}}{2 a^{6}}$, $\& с \bar{x}=\cdots-\frac{y^{3}}{6 a^{6}}, \&$ c. $\ddot{x}=\cdots \cdots-\frac{y^{4}}{24 a^{6}}, \delta c \mathrm{cc} . \ddot{x}$ $-\frac{y^{5}}{120 a^{6}}, \delta \dot{8} . \dot{x}=\ldots \ldots-\frac{y^{6}}{720 a^{6}}, \delta<c$. and $x=\ldots \ldots \ldots *$ $\cdots-\frac{y^{7}}{50+0 a^{6}}, \delta x c$. And therefore $x=y-\frac{y^{3}}{6 a^{2}}+\frac{y^{3}}{120 a a^{4}}-\frac{y^{7}}{5040 a^{a}}$, \&c.

If it were required to extract the Root y out of this Equation, $\dot{y}^{2} \dot{y}_{-}-x^{2} \dot{y}^{2}+m^{2} y^{2}-m^{2} a_{-}^{2}=0$, (where $\dot{x}=1$) we might procoed:
ceed thus. Becaufe $\dot{y}^{2}=\frac{m^{2} a^{2}-m^{2} v^{2}}{a^{2}-x^{2}}=m^{2}$, \&cc. 'tis $\dot{y}=m$, \&cc. and $y=: m x, \&-$. Taking the Fluxions, we fhall have $2 a^{2} j \ddot{y}$ $2 x \dot{y}^{2}-2 x^{2} \ddot{y} \ddot{y}+2 m^{2} \dot{y} y=0$, or $a^{2} \ddot{y}-x \dot{y}-x^{2} \ddot{y}+m^{2} y=0$, or $\ddot{y}=\frac{x y-n^{2} y}{a^{2}-x^{2}}=0, \delta x c$. Therefore taking the Fluxions again, 'tis $a^{2} \dot{y}-\dot{y}-3 \dot{x} \ddot{y}-x^{2} \ddot{y}+n^{2} \dot{y}=0$, that is, $a^{2} \dot{y}+\overline{m^{2}-1} \times \dot{y}-$ $3 x \ddot{y}-x^{2} \ddot{y}=0$, or $\ddot{y}=\frac{\overline{T-m \cdot m^{2}} \times \dot{j}+3 x \ddot{i}}{a^{2}-x^{2}}$; and making $\dot{y}=m, \& \mathrm{cc}$.
 $* * \frac{m \times \bar{i}-m^{2}}{2 a^{2}} x^{2}$, \&cc. and $y=* * * \frac{m \times \overline{1-m^{2}}}{2 \times 3^{a^{2}}} x^{3}, \& c c$. Taking the Fluxions again, 'tis $a^{2} \ddot{y}+\overline{m^{2}-4} \times \ddot{y}-5 x \dot{y}-x^{2} \dot{y}=0$; and again,
 $\frac{n \times \overline{1-m^{2}} \times \overline{9}-m^{2}}{44}$, \&cc. Therefore $\ddot{y}=* \frac{m \times \bar{x}-m^{2}}{m^{2}} \overline{a-m^{2}} x, \delta$ c. \ddot{y} $=* * \frac{m \times \overline{x-m^{2}} \times \overline{9-m^{2}}}{2 a 4}, \delta \mathrm{cc} . \ddot{y}=* * * \frac{m \times \overline{1-m^{2}} \times \overline{0-m^{2}}}{2 \times 344} x^{3}, \delta \mathrm{cc}$.
 scc. And fo on. Therefore we fhall have $y=m x+m \times$ $\frac{1-m^{2}}{2 \times 3 a^{2}} x^{3}+m \times \frac{1-m^{2}}{2 \times 3} \times \frac{9-m^{2}}{4 \times 5 x^{4}} x^{5}+m \times \frac{1-m^{2}}{2 \times 3} \times \frac{9-m^{2}}{4 \times 5} \times \frac{25-m^{2}}{6 \times 74^{4}} x^{7}$, ac.

This Series is equivalent to a Theorem of our Author's, which (in another place) he gives us for Angular Sections. For if x be the Sine of any given Arch, to Radius a; then will y be the Sine of another Arch, which is to the firft Arch in the given Ratio of m to 1. Here if m be any odd Number, the Series will become finite; and in other cafes it will be a converging Series.

And thefe Examples may be fufficient to explain this Method of Extraction of Roots; which, tho' it carries its own Demonftration along with it, yet for greater evidence may be thus farther illuftrated. In Equations whofe Roots (for example) may be reprefented by the general Series $y=A+B x+C x^{2}+D x^{3}$, \&cc. (which by due Reduction may be all Equations whatever,) the firf Term A of the Root will be a given quantity, or perhaps $=0$, which is to be known from the circumftances of the Queftion, or from the given Equation,

Equation, by Methods that have been abı fantly explain'd already. Then making $\dot{x}=1$, we thall have have $y=B+2 C x+3 D x^{2}$, \&cc. where B likewife is a conftant quantity, or perhaps $=0$, and reprefents the firft 'Term of the Series \dot{y}. This therefore is to be derived from the firft Fluxional Equation, either given or elfe to be found ; and then, becaufe it is $\dot{y}=\mathrm{B}$, \&xc. by taking the Fluents it will be $y=* \mathrm{~B} x$, \&cc. whence the fecond Term of the Root will be known. Then becaufe it is $\ddot{y}=2 \mathrm{C}+6 \mathrm{D} x$, \&cc. or becaufe the conftant quantity 2 C will reprefent the firt Term of \ddot{y}; this is to be derived from the fecond Fluxional Equation, either given or to be found. And then, becaufe it is $y={ }_{2} \mathrm{C}, \delta c \mathrm{c}$. by taking the Fluents it will be $\dot{y}=* 2 \mathrm{C} x, \& \mathrm{kc}$. and again $y=* * \mathrm{C} x^{2}$, \&cc. by which the third Term of the Root will be known. Then becaule it is $\ddot{y}=6 \mathrm{D}, \delta \mathrm{s}$. or becaufe the conftant quantity 6 D will reprefent the firft Term of the Series y; this is to be derived from the third Fluxional Equation. And then, becaufe it is $\ddot{y}=6 \mathrm{D}$, \&c. by taking the Fluents it will be $\ddot{y}=* 6 \mathrm{D} x, \delta \mathrm{cc} . \dot{y}=* * 3 \mathrm{D} x ;$, \&cc. and $y^{\prime}=* * * D x^{3}$, \&c. by which the fourth Term of the Root will be known. And fo for all the fubfequent Terms. And hence it will not be difficult to obferve the compofition of the Coefficients in moft cafes, and thereby difcover the Law of Continuation, in fuch Series as are notable and of general ufe.

If you fhould defire to know how the foregoing Trigonometrical Equations are derived from the Circle, it may be fhewn thus : on the Center A , with Radius $\mathrm{AB}=a$, let the Quadrantal Arch BC be defcribed, and draw the Radius AC. Draw the Tangent BK, and through any point of the Circumference D, draw the Secant ADK, meeting the Tangent in K . At any other point d of the Circumference, but as near to D as may be, draw the Secant Adk, meeting BKink; on Center A, with Radius AK, defcribe the Arch Kl, meeting Ak in l. Then fuppofing the point d contimually to approach towards D , till it finally crincides with it, the Tri-
 lincum Kik will continually approach to a right-lined: Triangle, and to fimilitude with the Triangle ABK : So that when $\mathrm{D} d$ is a

Moment of the Circumference, it will be $\frac{K k}{D d}=\frac{K k}{K l} \times \frac{\mathrm{K} l}{\overline{D d}}=\frac{A K}{A B}$ $\times \frac{A K}{A B}$. Make $A B=a$, the Tangent $B K=x$, and the Arch $\mathrm{BD}=y$; and inftead of the Moments $\mathrm{K} k$ and $\mathrm{D} d$, fubflitute the proportional Fluxions \dot{x} and \dot{y}, and it will be $\dot{\dot{y}}=\frac{a^{2}+x^{2}}{a^{2}}$, or $a^{2} \dot{y}$ $+x^{2} \dot{y}-a^{2} \dot{x}=0$.

From D to AB and de let fall the Perpendiculars DE and $\mathrm{D} g$, which $\mathrm{D} g$ meets $d e$, parallel to DE , in g. Then the ultimate form of the Trilineum Ddg will be that of a right-lined Triangle fimilar to DAE. Whence $\mathrm{D} d: d g:: \mathrm{AD}: \mathrm{AE}=\sqrt{\mathrm{AD} q-\mathrm{DE} q}$. Make $\mathrm{AD}=a, \mathrm{BD}=y$, and $\mathrm{DE}=x$; and for the Moments D $d, d y$, fubftitute their proportional Fluxions \dot{y} and \dot{x}, and it will be $\dot{y}: \dot{x}:: a: \sqrt{a^{2}-x^{2}}$. Or $\dot{y}^{2}: \dot{x}^{2}:: a^{2}: a^{2}-x^{2}$, or $a^{2} \dot{y}^{2}$ $-x^{2} \dot{y}^{2}-a^{2} \dot{x}^{2}=0$.
Hence the Fluxion of an Arch, whofe right Sine is x, being exprefs'd by $\frac{a \dot{x}}{\sqrt{a^{2}-x^{2}}}$; and likewife the Fluxion of an Arch, whofe sight Sine is y, being expref'd by $\frac{a y}{\sqrt{a^{2}-y^{2}}}$; if thefe Arches are to each other as I to m, their Fluxions will be in the fame proportion, and vice versa $\hat{\text {. }}$. Therefore $\frac{a \dot{x}}{\sqrt{a^{2}-x^{2}}}: \frac{a \dot{y}}{\sqrt{a^{2}-y^{2}}}: 1: m$, or $\frac{m \dot{x}}{\sqrt{a^{2}-x^{2}}}$ $=\frac{\dot{y}}{\sqrt{a^{2}-y^{2}}}$, or $\frac{m^{2} x^{2}}{a^{2}-x^{2}}=\frac{\dot{y}^{2}}{a^{2}-y^{2}}$, or putting $\dot{x}=1$, 'tis $a^{2} \dot{y}^{2}-$ $x^{2} j^{2}-m^{2} a^{2}+m^{2} y^{2}=0$; the fame Equation as before refolved.

We might derive other Fluxional Equations, of a like nature with thefe, which would be accommodated to Trigonometrical ufes. As if y were the Circular Arch, and x its verfed Sine, we fhould have the Equation $2 a x y^{2}-x^{2} y^{2}-a^{2} \dot{x}^{2}=0$. Or if y were the Arch, and x the correfponding Secant, it would be $x^{4} y^{2}-a^{2} x^{2} \dot{y}^{2}-a^{4} \dot{x}^{2}$ $=0$. Or inftead of the natural, we might derive Equations for the artificial Sines, Tangents, Secants, \&cc. But I fhall leave thefe Difquifitions, and many fuch others that might be propofed, to excrcife the Indurtry and Sagacity of the Learner.

Sect. VI. An Analytical Appendix, explaining fome. Terms and Expreffions in the foregoing work.

BEcaufe mention has been frequently made of given Equations, and others affumed ad libitum, and the like; I fhall take occation from hence, by way of Appendix, to attempt fome kind of explanation of this Mathematical Language, or of the Terms given, affignd, affemed, and required Quantities or Equations, which may give light to fome things that may otherwife feem obfcure, and may remove fome doubts and fcruples, which are apt to arife in the Mind of a Learner. Now the origin of fuch kind of Expreffions in all probability feems to be this. The whole affair of purfuing Mathematical Inquiries, or of refolving Problems, is fuppofed (tho' tacitely) to be tranfacted between two Perfons, or Parties, the Propofer and the Refolver of the Problem, or (if you pleafe) between the Mafter (or Inftructor) and his Scholar. Hence this, and fuch like Phrafes, datam rectam, vel datum angulum, in imperatâ ratione fecare. As Examples inftruct better than Precepts, or perhaps when both are join'd together they inftruct beft, the Mafter is fuppos'd to propofe a Queftion or Problem to his Scholar, and to chufe fuch Terms and Conditions as he thinks fit; and the Scholar is obliged. to folve the Problem with thofe limitations and reftrictions, with thofe Terms and Conditions, and no other. Indeed it is required on the part of the Mafter, that the Conditions he propofes may be confiftent with one another; for if they involve any inconfiftency or contradiction, the Problem will be unfair, or will become abfurd and impoffible, as the Solution will afterwards difcover. Now thefe Conditions, there Points, Lines, Angles, Numbers, Equations, $\mathcal{E} c$, that at firft enter the ftate of the Queftion, or are fuppofed to be chofen or given by the Mafter, are the data of the Problem, and t. . Anfivers he expects to receive are the quafita. As it may fometimes happen, that the data may be more than are neceflary for determining the Queftion, and fo perhaps may interfere with one another, and the Problem (as now propofed) may become impoffible; fo they may be fewer than are neceflary, and the Problem thence will be indetermin'd, and may require other Conditions to be given, in order to a compleat Determination, or perfectly to fulfil the quafita. In this cafe the Scholar is to fupply what is wanting, and at his difcretion may affiume fuch and fo many other Terms and Conditions, Equations and Limitations, as he finds
will be neceflary to his purpofe, and will beft conduce to the fimpleft, the eafieft, and neateft Solution that may be had, and yet in the mof general manner. For it is convenient the Problem fhould be propofed as particular as may be, the better to fix the Imagination; and yet the Solution fhould be made as general as poffible, that it may be the more inftructive, and extend to all cafes of a like nature.

Indeed the word datum is often ufed in a fenfe which is fomething different from this, but which ultimately centers in it. As that is call'd a datum, when one quantity is not immediately given, but however is neceff, rily infer'd from another, which other perhaps is neceffarily infer'd from a third, and f_{0} on in a continued Series, till it is neceffarily infer'd from a quantity, which is known or given in the fenfe before explain'd. This is the Notion of Euclid's data, and other Analytical Argumentations of that kind. Again, that is often call'd a given quantity, which always remains conftant and invariable, while other quantities or circumftances vary; becaufe fuch as thefe only can be the given quantities in a Problem, when taken in the foregoing fenfe.

To make all this the more fenfible and intelligible, I fhall have. recourfe to a few practical inftances, by way of Dialogue, (which was the old didactic method,) between Mafter and Scholar; and this only in the common Algebra or Analyticks, in which I mall borrow my Examples from our Author's admirable Treatife of Univerfal Arithmetick. The chief artifice of this manner of Solution will confift in this, that as faft as the Mafter propofes the Conditions of his Queftion, the Scholar applies thofe Conditions to ufe, argues from them Analytically, makes all the neceffary deductions, and derives fuch confequences from them, in the fame order they are propofed, as he apprehends will be moft fubfervient to the Solution. And he that can do this.in all cafes, after the fureft, fimpleft, and readieft manner, will be the beft ex-tempore Mathematician. But this method will be beft explain'd from the following Examples.
I. M. A Gensleman being veilling to diftribute Alms --- S. Let the Sum he intended to diftribute be reprefented by x. M. Among fome poor people. S. Let the number of poor be y, then $\frac{x}{y}$ would have been the fhare of each. M. He wanted 3 frillings --- $\stackrel{y}{S}$. Make $3=a$, for the fake of univerfality, and let the pecuniary Unit be one Shilling; then the Sum to be diftributed would have been $x+a$,
and the nlare of each would have been $\frac{x+a}{y}$. M. So that each might reccive 5 fillings. S. Make $5=b$, then $\frac{x+a}{y}=b$, whence $x=b y-a$. M. Therefore be gave every one 4 Jillings. S. Make $4=c$, then the Money diftributed will be $c y$. M. And be bas 10 fbillings remaining. S. Make $10=d$, then $c y+d$ was the Money he intended at firf to diftribute ; or $c y+d=(x=) b y-a$, or $y=\frac{a+d}{b-c}$. M. What was the number of poor people? S. The number was $y=\frac{a+d}{b-c}=\frac{3+10}{5-4}=$ I3. M. And bow much Alms did be at fryft intend to dilfribute? S. He had at firft $x=b y-a$ $=5 \times 13-3=62$ fhillings. M. How do you prove your Solution? S. His Money was at firt 62 fhillings, and the number of poor people was 13. But if his Money had been $62+3=65=13 \times 5$ mhillings, then each poor perfon might have received 5 hillings. But as he gives to each 4 fhillings, that will be $13 \times 4=52$ fhillings diftributed in all, which will leave him a Remainder of $62-5^{2}$ $=10$ fhillings.
II. M. A young Merchant, at bis firft entrance npon bufinefs, began the World witb a certain Sum of Money. S. Let that Sum be x, the pecuniary Unit being one Pound. M. Out of which, to maintain binfelf the firft jear, be expended 100 pounds. S. Make the given number $100=a$; then he had to trade with $x-a$. M. He traded woith the reft, and at the end of the year had improved it by a third part. S. For univerfality-fake I will affume the general number n, and will make $\frac{1}{3}=n-1$, (or $n=\frac{4}{3}$;) then the Improvement was $\overline{n-1} \times \bar{x}-a=n x-n a-x+a$, and the Tradingfock and Improvement together, at the end of the firt year, was $n x$ - na. M. He did the fame thing the fecond year. S. That is, his whole Stock being now $n x$ - $n a$, deducting a, his Expences for this year, he would have $n x-n a-a$ for a Trading-ftock, and $\overline{n-1} \times \overline{n x-n a-a}$, or $n^{2} x-n^{2} a-n x+a$ for this year's Improvement, which together make $n^{2} x-n^{2} a-n a$ for his Eftate at the end of the fecond year. M. As alfo the third year. S. His whole Stock being now $r^{2} x-n^{2} a-n a$, taking out his Expences for the third year, his Trading-fock will be $n^{2} x-n^{2} a-n a-a$, and the Improvement this year will be $\overline{n-1} \times \overline{n^{2} x-n^{2} a-n a-a}$, or $n^{3} x-n^{3} a-n^{2} x+a$, and the Stock and Improvement together, or his whole Eftate at the end of the third year will be $n^{3} x$ - $n^{3} c_{a}$ $-n^{2} a-n a$, or in a better form $n^{3} x+\frac{n^{3}-1}{1-n} n a$. In like manner
if he proceeded thus the fourth year, his Eftate being now $n^{3} x-$ $n^{3} a-n^{\star} \dot{a}-n a$, , taking out this year's Expence, his Trading-ftock will be $n^{3} x-n^{3} a-n^{2} a-n a-a$, and this year's Improvement is $\overline{n-1} \times \overline{n^{3} x-n^{3} a-n^{2} a-n a-a}$, or $n^{4} x-n^{4} a-n^{3} x+a$, whicl added to his Trading-ftock will be $n^{4} x$ - $n^{4} a-n^{3} a$ - $n^{5} a$ - $n a$, or $n^{4} x+\frac{n 4-1}{1-n} n a$, for his Eftate at the end of the fourth year. And fo, by Induction, his Eftate will be found $n^{5} x+\frac{n^{5}-1}{1-n} n a$ at the end of the fiftl year. And univerfally, if I affume the general Number m, his Eftate will be $n^{* *} x+\frac{n^{m}-1}{1-n} n$ at the end of any number of years denoted by m. M. But be made bis Effate double to wohat it was at firf. S. Make $2=b$, then $n^{m} x+$ $\frac{n^{n}-1}{1-n^{n}} n a=b x$, or $x=\frac{n^{n}-1}{n-1} \times n^{n-6}-6$. M. At the end of 3 years: S. Then $m \equiv 3, a=100, b=2, n=\frac{4}{3}$, and therefore $x=$ $\frac{\frac{4^{3}}{3^{3}}-1}{\frac{1}{3} \frac{1}{4^{5}}-2} \times \frac{4}{3} \times 100=\frac{4^{3}-3^{3}}{4^{3}-2 \times 3^{3}} \times 400=\frac{6+-27}{64-54} \times 400=\frac{37}{\frac{3}{10}} \times$ $400=1480$. M. What was bis Effate at firft? S. It was I 480 pounds.
III. M. Two Bodies A and B are at a given diftance from. each other. S. As their diftance is faid to be given, though it is not fo actually, I may therefore affume it. Let the initial diftance of the Bodies be $59=e$, and let the Linear Unit be one Mile. M. And. move equably towards one another. S. Let x reprefent the whole fpace defcribed by A before they meet ; then will $e-x$. be the whole fpace defcribed by B. M. Witb given Velocities. S. I will affume the Velocity of A to be fuch, that it will move $7=c$ Miles in $2=f$ Hours, the Unit. of Time being one Hour. . Then becaufe it is $c: f:: x: \frac{f x}{c}, A$ will move his whole fpace x in the time $\frac{f x}{6}$. Alfo I will affume the Velocity of B to be fuch, that it will move $8=d$ Miles in $3=g$ Hours. Then becaufe it is d : $g:: e-x: \frac{e-x}{d} g, B$ will move his whole fpace $e-x$ in the time $\frac{e-x}{d}$ g. M. But A moves a given time - .- S. Let that time be $1=b$ Hour. M. Before B begins to move. S. Then \boldsymbol{A} 's time is equal to B 's time added to the time b, or $\frac{f x}{c}=\frac{e-x}{d} g+b$. M!

M．Where will they meet，or what will be the Jpace that each will bave defcribed？S．From this Equation we fhall have $x=\frac{e g+d b}{d f+g} c$ $=\frac{59 \times 3+8 \times 1}{8 \times 2+7 \times 3} \times 7=\frac{185}{37} \times 7=5 \times 7=35$ Miles，which will be the whole fpace defrribed by A ．Then $e-x=59-35=$ 24 Miles will be the whole fpace defcribed by B ．
IV．M．If 12 Oxen can be maintained by the Pafture of $3 \frac{1}{3}$ Acres of Meadow－ground for 4 weeks，S ．Make $12=a, 3 \frac{1}{3}=b, 4=c$ ； then affuming the general Numbers e, f, b ，to be determin＇d after－ wards as occafion thall require，we fhall have by analogy

	Oxen	Paftur	e Time
	二 71	$[b]$	$[c]$
Then	岛 $a e$	be	c
Alfo		e	c
And	式 $\frac{a c e}{b}$	require $\{e$	during $\{1$
Alfo	\％$\frac{a c e}{b f}$	e	f
Alfo	$\int \frac{0_{0}^{4}}{\substack{4}}$	e	［b］

M．And if，becaufe of the continual growth of the Grafs after the four weeks，it be fornd that 21 Oxen can be maintain＇d by the pafture of 10 fuch Acres for 9 weeks，S. Make $21=d, e=10$ ， $f=9$ ；then becaufe on this fuppofition，the Oxen d require the parture e during the time f ；and in the former cafe the Oxen $\frac{\text { ace }}{b f}$ ． required the fame pafure during the fame time：Therefore the growth of the Grafs of the quantity of pafture e ，（commencing after 4 or c weeks，and continuing to the end of the Time f ，or during the whole time $f-c$ ，）is fuch，as alone was fufficient to maintain the difference of the Oxen，or the number d－$\frac{a c e}{b f}$ ，for the whole time f ．Then reciprocally that growth would be fuffi－ cient to maintain the number of Oxen $d f-\frac{a c e}{b}$ for the time I ， or the number of Oxen $\frac{d f}{b}$－$\frac{a c e}{b b}$ for the time b ．And becaule this growth will be proportional to the time，and will maintain a greater number of Oxen in proportion as the time is greater；we thall．have

$$
\begin{array}{cc}
\text { Time Oxen Time Oxen } \\
f-c \cdot & \frac{d f}{b}-\frac{a c e}{b b}:: b-c \cdot \frac{b-c}{f-c} \text { into } \frac{d f}{b}-\frac{a c e}{b b},
\end{array}
$$

which will be the number of Oxen that may be maintain'd by the growth only of the pafture e, during the whole time b. But it was found before, that without this growth of the Grafs, the Oxen $\frac{a r e}{b b}$ might be maintain'd by the pafture e for the time b. Therefore thefe two together, or $\frac{a c e}{b b}+\frac{b-c}{f-c} \times \frac{b d f-a c e}{b b}$, will be the number of Oxen that may be maintain'd by the pafture e, and its growth together, during the time b. M. How many Oxen may be maintain'd by 24 Acres of fuch pafture for 18 weeks? S. Suppofe x to be that number of Oxen, and make $24=g$, and $b=18$. Then by analogy

Oxen Parture

And confequently $\frac{c x}{g}=\frac{a c e}{b b}+\frac{b-c}{f-c} \times \frac{b d f-a c e}{b b}$, or $x=\frac{a c g}{b b}+\frac{b-c}{f-c}$
$\times \frac{\frac{d f g}{c b}-\frac{a g}{b b}}{b b}=\frac{a c}{b}+\frac{b-c}{f-c} \times \frac{d f}{6}-\frac{a c}{b}$ into $\frac{g}{b}=\frac{12 \times 4}{3^{\frac{1}{3}}}+\frac{18-4}{9-4} \times$ $\frac{21 \times 9}{10}-\frac{12 \times 4}{3^{\frac{1}{3}}}$ into $\frac{4}{1} \frac{4}{8}=36$.
V. M. If I bave an Annuity --- S. Let x be the prefent value of I pound to be received I year hence, then (by analogy) x^{2} will be the prefent value of I pound to be received 2 years hence, \&c. and in general, x^{m} will be the prefent value of I pound to be received m years hence. Therefore, in the cafe of an Annuity, the Series $x+x^{2}+x^{5}+x^{4}$, \&xc. to be continued to fo many Terms as there are Units in m, will be the prefent value of the whole Annuity of 1 pound, to be continued for m years. But becaufe $\frac{x-x^{m+i}}{1-x}=x+x^{2}+x^{3}+x^{4}$, \&c. continued to fo many T.erms as there are Units in m, (as may appear by Divifion;) therefore $\frac{x-r^{m+1}}{1-x}$ will reprefent the Amount of an Annuity of 1 pound, to be continued for m years. M. Of Pounds. S. Make
$=a$, then the Amount of this Annuity for m years will be $\frac{x-x^{m+1}}{1-x}$ a. M. To be continued for 5 years fucceffively. S. Then $m=5$. M. Which I fell for pounds in ready Money. S. Make $=c$, then $\frac{x-x^{m+1}}{1-x} a=c$, or $x^{m+1}-\overline{\frac{c}{a}+1} \times x+\frac{c}{a}=0$ 。 In any particular cafe the value of x may be found by the Refolution of this affected Equation. M. What Intereft am I allow'd per centum per annum? S. Make $100=b$; then becaufe x is the prefent value of 1 pound to be received 1 year hence, or (which is the fame thing) becaufe the prefent Money x, if put out to ufe, in I year will produce I pound; the Intereft alone of 1 pound for I year will be I - x, and therefore the Intereft of 100 (or b) pounds for 1 year will be $b-b x$, which will be known when x is known.

And this might be fufficient to thew the conveniency of this Method; but I hall farther illuftrate it by one Geometrical Problem; which fhall be our Author's lvir.
VI. M. In the right Line AB I give you the two points A and B . S. Then their diftance $\mathrm{AB}=m$ is given alfo. M. As likewife the two points C and D out of the Line AB . S. Then confequently the figure ACBD is given in magnitude and fpecie; and producing CA and CB towards d and δ, I can take $\mathrm{A} d=\mathrm{AD}$, and $\mathrm{B} \delta=\mathrm{BD}$. M. Alfo I give you the indefinite right Line EF in pofition, paffing thro' the
 given point D. S. Then the Angles ADE and BDF are given, to which (producing AB both ways, if need be, to e and f, I can make the Angles Ade and Bof equal refpectively, and that will determine the points e and f, or the Lines $\mathrm{A} e=a$, and $\mathrm{B} f=c$. And becaufe de and of are thereby known, I can continue de to G, fo that $d G$ $=\delta f$, and make the given line $e \mathrm{G}=b$. Likewife I can draw CH
and CK parallel to ed and for refpectively, meeting AB in H and K ; and becaufe the Triangle CHK will be given in magnitude and fpecie, I will make $\mathrm{CK}=d, \mathrm{CH}=e$, and $\mathrm{HK}=f$. M. Now let the given Angles CAD and CBD be conceived to revolve about the given points or Poles A and B . S. Then the Lines AD and $\mathrm{CA} d$ will move into another fituation AL and $c \mathrm{~A} /$, fo as that the Angles $\mathrm{DAL}, d \mathrm{~A}$, and CAc will be equal. Alfo the Lines BD and CB_{B} will obtain a new fituation BL and $c \mathrm{~B} \lambda$, fo as that the Angles DBL,$\delta \mathrm{B} \lambda$ and $\mathrm{CB} c$ will be equal. M: Andlet D , the Interfection of the Lines AD and BD, akoays move in the right Line EF. S. Then the new point of Interfection L is in EF ; then the Triangles DAL and $d \mathrm{~A}$, as alfo DBL and $\delta B \lambda$, are equal and fimilar ; then $d l=\mathrm{DL}=\delta \lambda$, and therefore $\mathrm{Gl}=f \lambda$. M. What will be the nature of the Curve defcribed by the other point of Interfection C? S. From the new point of Interfection c to AB, I will draw the Lines $c h$ and $c k$, parallel to CH and CK refpectively. Then will the Triangle clok be given in fpecie, though not in magnitude, for it will be fimilar to CHK. Alfo the Triangle $\mathrm{B} c k$ will be fimilar to $\mathrm{B} \lambda f$. And the indefinite Line $\mathrm{B} k=x$ may be affumed for an Abfcifs, and ck=y may be the correfponding Ordinate to the Curve $\mathrm{C} c$. Then becaufe it is $\mathrm{B} k(x): c k(y)$ $:: \mathrm{B} f(c): f \lambda=\frac{y}{x}=\mathrm{G} l$. Subtract this from $\mathrm{G} e=b$, and there will remain $l e=b-\frac{y}{x}$. Then becaufe of the fimilar Triangles $c b k$ and CHK, it will be $\mathrm{CK}(d): \mathrm{CH}(e):: c k(y): c h=\frac{e y}{d}$. And $\operatorname{CK}(d): \operatorname{HK}(f):: c k(y): b k=\frac{f y}{d} . \quad$ Therefore $\mathrm{A} b=\mathrm{AB}-$ $\mathrm{B} k-b k=m-x-\frac{f y}{d}$. But it is $\mathrm{A} b\left(m-x-\frac{f y}{d}\right): \operatorname{cb}\left(\frac{e y}{d}\right)::$ $\mathrm{Ae}(a): \operatorname{le}\left(b-\frac{c y}{x}\right)$. Therefore $\overline{m-x-{ }_{x}^{f y}} \times \overline{b-\frac{c y}{d}}=\frac{a e y}{d}$, or $f c y^{2}+\overline{d c-a e-b f} \times x y-d c m y-b d x^{2}+b d m x=0$. In which Equation, becaufe the indeterminate quantities x and y arife only to two Dimenfions, it fhews that the Curve defcribed by the point C is a Conic Section.
M. You bave therefore folved the Problem in general, but you flould now apply your Solution to the feveral Jpecies of Conic Sections in particular. S. That may eafily be done in the following manner: Make $\frac{a e+b f-c d}{c}=2 p$, and then the foregoing Equation will become $f c y^{2}-2 p c x y-d c m y-b d x^{2}+b d m x=0$, and by extracting
tracting the Square - root it will be $y=\frac{p}{f} x+\frac{d m}{2 f} \pm$
 that if the Term $\frac{p p}{\frac{p p}{f f}+\frac{b d}{f c}} \times x^{2}$ were abfent, or if $\frac{p p}{f f}+\frac{b d}{f c}=0$, or $\frac{p p}{f f}=-\frac{b d}{f_{c}}$; that is, if the quantity $\frac{b d}{f c}$ (changing its fign) fhould be equal to $\frac{p p}{f f}$, then the Curve would be a Parabola. But if the fame Term were prefent, and equal to fome affirmative quantity, that is, if $\frac{p p}{f f}+\frac{b d}{f c}$ be affirmative, (which will ahways be when $\frac{b d}{f c}$ is affirmative, or if it be negative and lefs than $\frac{p p}{f f}$) the Curve will be an Hyperbola. Lafly, if the fame Term were prefent and negative, (which can only be when $\frac{b d}{f c}$ is negative, and greater than $\frac{p p}{f f}$,) the Curve will be an Ellipfis or a Circle.
I fhould make an apology to the Reader, for this Digreffion from the Method of Fluxions, if I did not hope it might contribute to his entertainment at leaft, if not to his improvement. And I am fully convinced by experience, that whoever fhall go through the reft of our Author's curious Problems, in the fame manner, (wherein, according to his ufual brevity, he has left many things to be fupply'd by the fagacity of his Reader,) or fuch other Quertions and Mathematical Difquifitions, whether Arithmetical, Algebraical, Geometrical, \&cc. as may eafily be collected from Books treating on there Subjects; I fay, whoever fhall do this after the foregoing manner, will find it a very agreeable as well as profitable exercife : As being the proper means to acquire a habit of Inveftigation, or of arguing furely, methodically, and Analytically, even in other Sciences as well as fuch as are purely Mathematical; which is the great end to be aim'd at by thefe Studies.

Sect. VII. The Conclufion; containing a hort recapitulation or reviere of the whole.

WE are now arrived at a period, which may properly enough be call'd the conclufion of the Metbod of Fluxions and Infinite Series; for the defign of this Method is to teach the nature of Series in general, and of Fluxions and Fluents, what they are, how they are derived, and what Operations they may undergo; which defign (I think) may now be faid to be accomplifh'd. As to the application of this Method, and the ufes of thefe Operations, which is all that now remains, we fhall find them infifted on at large by the Author in the curious Geometrical Problems that follow. For the whole that can be done, either by Series or by Fluxions, may eafily be reduced to the Refolution of Equations, either Algebraical or Fluxional, as it has been already deliver'd, and will be farther apply'd and purfued in the fequel. I have continued my Annotations in a like manner upon that part of the Work, and intended to have added them here; but finding the matter to grow fo faft under my hands, and feeing how impoffible it was to do it juftice within fach narrow limits, and alfo perceiving this work was already grown to a competent fize; I refolved to lay it before the Mathematical Reader unfinifh'd as it is, referving the completion of it to a future opportunity, if I fhall find my prefent attempts to prove acceptable. Therefore all that remains to be done here is this, to make a kind of review of what has been hitherto deliver'd, and to give a fummary account of it, in order to acquit myfelf of a Promife I made in the Preface. And having there done this already, as to the Author's part of the work, I fhall now only make a fhort recapitulation of what is contain'd in my own Comment upon it.

And firf in my Annotations upon what I call the Introduction, or the Refolution of Equations by infinite Series, I have amply purfued a ufeful hint given us by the Author, that Arithmetick and Algebra are but one and the fame Science, and bear a Arict analogy to each other, both in their Notation and Operations; the firft computing after a definite and particular manner, the latter after a general and indefinite manner : So that both together compofe but one uniform Science of Computation. For as in common Arithinetick we reckon by the Root \mathcal{T} en, and the feveral Powers of that Roor; fo in Algebra, or Analyticks, when the Terms are orderly
difpos'd as is prefcribed, we reckon by any other Root and its Powers, or we may take any general Number for the Root of our Arithmetical Scale, by which to exprefs and compute any Numbers required. Andas in common Arithmetick we approximate continually to the truth, by admitting Decimal Parts in infinitum, or by the ufe of Decimal Fractions, which are compofed of the reciprocal Powers of the Root $T_{e n n}$; fo in our Author's improved Algebra, or in the Method of infinite converging Series, we may continually approximate to the Number or Quantity required, by an orderly fucceffion of Fractions, which are compofed of the reciprocal Powers of any Root in general. And the known Operations in common Arithmetick, having a due regard to Analogy, will gencrally afford us proper patterns and fpecimens, for performing the like Operations in this Univerfal Arithmetick.

Hence I proceed to make fome Inquiries into the nature and formation of infinite Series in general, and particularly into their two principal circumftances of Convergency and Divergency; wherein I attempt to fhew, that in all fuch Series, whether converging or diverging, there is always a Supplement, which if not exprefs'd is however to be underftood; which Supplement, when it can be aicertained and admitted, will render the Series finite, perfect, and accurate. That in diverging Series this Supplement muft indifenfably be admitted and exhibited, or otherwife the Conclufion will be imperfect and erroneous. But in converging Series this Supplement nay be neglected, becaufe it continually diminifhes with the Terms of the Series, and finally becomes lefs than any affignable quantity. And hence arifes the benefit and conveniency of infinite converging Series ; that whereas that Supplement is commonly fo implicated and entangled with the Terms of the Series, as often to be impoffible to be extricated and exhibited; in converging Series it may fafely be neglected, and yet we fhall continually approximate to the quantity required. And of this I produce a variety of Inftances, in numerical and other Series.

I then go on to fhew the Operations, by which infinite Series are either produced, or which, when produced, they may occalionally undergo. As firft when fimple fpecious Equations, or pure Powers, are to be refolved into fuch Series, whether by Divifion, or by Extraction of Roots; where I take notice of the ufe of the afore-mention'd Supplement, by which Series may be render'd finite, that is, may be compared with other quantities, which are confider'd as given. I then deduce feveral ufeful Theorems, or other Artifices,
for the more expeditious Multiplication, Divifion, Involution, and Evolution of infinite Series, by which they may be eafily and readily managed in all cafes. Then I thew the ufe of thefe in pure Equations, or Extractions; from whence I take occafion to introduce a new praxis of Refolution, which I believe will be found to be very cafy, natural, and general, and which is afterwards apply'd to all fpecies of Equations.

Then I go on with our Author to the Exegefis numerofa, or to the Solution of affected Equations in Numbers; where we hhall find his Method to be the fame that has been publifh'd more than once in other of his pieces, to be very fhort, neat, and elegant, and was a great Improvement at the time of its firft publication. This Method is here farther explain'd, and upon the fame Principles a general Theorem is form'd, and diftributed into feveral fubordinate Cafes, by which the Root of any Numerical Equation, whether pure or affected, may be computed with great exactnefs and facility.

From Numeral we pafs on to the Refolution of Literal or Specious affected Equations by infinite Series; in which the firft and chief difficulty to be overcome, confifts in determining the forms of the feveral Series that will arife, and in finding their initial Approximations. Thefe circumftances will depend upon fuch Powers of the Relate and Correlate Quantities, with their Coefficients, as may happen to be found promifcuoufly in the given Equation. Therefore the Terms of this Equation are to be difpofed in longrum of in latum, or at leaft the Indices of thofe Powers, according to a combined Arithmetical Progreffion in plano, as is there explain'd; or according to our Author's ingenious Artifice of the Parallelogram and Ruler, the reafon and foundation of which are here fully laid open. This will determine all the cafes of exterior Terms, together with the Progreffions of the Indices; and therefore all the forms of the feveral Series that may be derived for the Root, as alfo their initial Coefficients, Terms, or Approximations.

We then farther profecute the Refolution of Specious Equations, by diverfe Methods of Analyfis; or we give a great variety of Proceffes, by which the Series for the Roots are eafily produced to any number of Terms required. Thefe Proceffes are generally very fimple, and depend chiefly upon the Theorems before deliver'd, for finding the Terms of any Power or Root of an infinite Series. And the whole is illuftrated and exemplify'd by a great variety of Infances, which are chiefly thote of our Author.

The Method of infinite Series being thus fufficiently difcufs'd, we make a 'Tranfition to the Method of Fluxions, wherein the nature and foundation of that Method is explain'd at large. And fome general Obfervations are made, chiefly from the Science of Rational Mechanicks, by which the whole Method is divided and diftinguifh'd into its two grand Branches or Problems, which are the Direct and Inverfe Methods of Fluxions. And fome preparatory Notations are deliver'd and explain'd, which equally concern both thefe Methods.

I then proceed with my Annotations upon the Author's firf Problem, or the Relation of the flowing Quantities being given, to determine the Relation of their Fluxions. I treat here concerning Fluxions of the firft order, and the method of deducing their Equations in all cafes. I explain our Author's way of taking the Fluxions of any given Equation, which is much more general and fcientifick than that which is ufually follow'd, and extends to all the varieties of Solutions. This is alfo apply'd to Equations involving feveral flowing Quantities, by which means it likewife comprehends thofe cafes, in which either compound, irrational, or mechanical Quantities may be included. But the Demonftration of Fluxions, and of the Method of taking them, is the chief thing to be confider'd here; which I lave endeavour'd to make as clear, explicite, and fatisfactory as I was able, and to remove the difficulties and objections that have becn raifed againft it : But with what fuccefs I muft leave to the judgment of others.

I then treat concerning Fluxions of fuperior orders, and give the Method of deriving their Equations, with its Demonftration. For tho' our Author, in this Treatife, does not expreflly mention thefe orders of Fluxions, yet he has fometimes recourfe to them, tho' tacitely and indirectly. I have here fhewn, that they are a neceffary refult from the mature and notion of firf Fluxions; and that all thefe feveral orders differ from each other, not abfolutely and effentially, but only relatively and by way of comparifon. And this I prove as well from Geometry as from Analyticks; and I actually exhibit and make fenfible thefe feveral orders of Fluxions.

But more efpecially in what I call the Geometrical and Mechanical Elements of Fluxions, I lay open a general Method, by the help of Curve-lines and their Tangents, to reprefent and exhibit Fluxions and Fluents in all cafes, with all their concomitant Symptoms and

Affections, after a plain and familiar manner, and that even to ocular view and infpection. And thus I make them the Objects of Senfe, by which not only their exiftence is proved beyond all poffible contradiction, but alfo the Mcthod of deriving them is at the fame time fully evinced, verified, and illuftrated.

Then follow my Annotations upon our Author's fecond Problem, or the Relation of the Fluxions being given, to determine the Relation of the flowing Quantities or Fluents; which is the fame thing as the Inverfe Method of Fluxions. And firft I explain (what our Author calls) a particular Solution of this Problem, becaufe it cannot be generally apply'd, but takes place only in fuch Fluxional Equations as have been, or at leaft might have been, previoufly derived from fome finite Algebraical or Fluential Equations. Whereas the Fluxional Equations that ufually occur, and whofe Fluents or Roots are required, are commonly fuch as, by reafon of Tcrms either redundant or deficient, cannot be refolved by this particular Solution; but muft be refer'd to the following general Solution, which is here diftributed into thefe three Cafes of Equations.

The firt Cafe of Equations is, when the Ratio of the Fluxions of the Relate and Correlate Quantities, (which 'Torms are here explain'd,) can be exprefs'd by the Terms of the Correlate Quantity alone ; in which Cafe the Root will be obtain'd by an eafy procefs: In finite Terms, when it may be done, or at leaft by an infinite Series. And here a ufeful Rule is explain'd, by which an infinite Expreflion may be always avoided in the Conclufion, which otherwife would often occur, and render the Solution inexplicable.

The fecond Cafe of Equations comprchends fuch Fluxional Equations, wherein the Powers of the Relate and Correlate Quantities, with their Fluxions, are any how involved. Tho' this Cafe is much more operofe than the former, yet it is folved by a variety of eafy and fimple Analyfes, (more fimple and expeditious, I think, than thofe of our Author, and is illuftrated by a numerous collection of Examples.

The third and laft Cafe of Fluxional Equations is, when there are more than two Fluents and their Fluxions involved; which Cafe, without much trouble, is reduced to the two former. But here are alfo explain'd fome other matters, farther to illuftrate this Doctrine; as the Author's Demonftration of the Inverfe Method of Fluxions, the Rationale of the Tranmutation of the Origin of Fluents to other
places at pleafure, the way of finding the contemporaneous Increments of Fluents, and fuch like.

Then to couclude the Method of Fluxions, a very convenient and general Method is propofed and explain'd, for the Refolution of all kinds of Equations, Algebraical or Fluxional, by having recourfe to fuperior orders of Fluxions. This Method indeed is not contain'd in our Author's prefent Work, but is contrived in purfuance of a notable hint he gives us, in another part of his Writings. And this Method is exemplify'd by feveral curious and ufeful Problems.

Laftly, by way of Supplement or Appendix, fome Terms in the Mathematical Language are farther explain'd, which frequently occur in the foregoing work, and which it is very neceflary to apprehend rightly. And a fort of Analytical Praxis is adjoin'd to this Explanation, to make it the more plain and intelligible; in which is exhibited a more direct and methodical way of refolving fuch Algebraical or Geometrical Problems as are ufually propofed; or an attempt is made, to teach us to argue more clofely, diftinctly, and Analytically.

And this is chiefly the fubrfance of my Comment upon this part of our Author's work, in which my conduct has always been, to endeavour to digeft and explain every thing in the moft direct and natural order, and to derive it from the moft immediate and genuine Principles. I have always put myfelf in the place of a Learner, and have endeavour'd to make fuch Explanations, or to form this into fuch an Inftitution of Fluxions and infinite Series, as I imagined would have been ufeful and acceptable to myfelf, at the time when I firft enter'd upon thefe Speculations. Matters of a trite and eafy nature I have pafs'd over with a flight animadverfion: But in things of more novelty, or greater difficulty, I have always thought myfelf obliged to be more copious and explicite; and am confcious to myfclf, that I have every where proceeded cum fincero animo docendi. Wherever I have fallen fhort of this defign, it flould not be imputed to any want of care or good intentions, but rather to the want of 1 kill, or to the abftrufe nature of the fubject. I fhall be glad to fee my defects fupply'd by abler hands, and fhall always be willing and thankful to be better inftructed.

What perhaps will give the greatert difficulty, and may furnifh moft matter of objection, as I apprehend, will be the Explanations before given, of Moments, vanifling quantities, infinitely little quan-
tities, and the like, which our Author makes ufe of in this Treatife, and elfewhere, for deducing and demonftrating hisMethod of Fluxions. I fhall therefore here add a word or two to my foregoing Explanations, in hopes farther to clear up this matter. And this feems to be the more neceffary, becaufe many difficulties have been already. ftarted about the abftract nature of thefe quantities, and by what name they ought to be call'd. It has even been pretended, that they are utterly impofible, inconceiveable, and unintelligible, and it may therefore be thought to follow, that the Conclufions derived by their means muft be precarious at leaft, if not erroneous and impoffible.

Now to remove this difficulty it fhould be obferved, that the only Symbol made ufe of by our Author to denote thefe quantities, is the letter o, either by itfelf, or affected by fome Coefficient. But this Symbol o at firft reprefents a finite and ordinary quantity, which mutt be underftood to diminifh continually, and as it were by local Motion; till after fome certain time it is quite exbaufted, and terminates in mere nothing. This is furely a very intelligible Notion. But to go on. In its approach towards nothing, and juft before it becomes abfolute nothing, or is quite exhaufted, it muift neceffarily pafs through vanifhing quantities of all proportions. For it cannot pafs from being an affignable quantity to nothing at once; that were to proceed per faltum, and not continually, which is contrary to the Suppofition. While it is an affignable quantity, tho' ever fo little, it is not yet the exact truth, in geometrical rigor, but only an Approximation to it; and to be accurately true, it muft be lefs than any affignable quantity whatfoever, that is, it muft be a vanifhing quantity. Therefore the Conception of a Moment, or vanifhing quantity, muft be admitted as a rational Notion.

But it has been pretended, that the Mind cannot conceive quantity to be fo far diminifh'd, and fuch quantities as thefe are reprefented as impofiible. Now I cannot perceive, even if this impoffibility were granted, that the Argumentation would be at all affected by it, or that the Conclufions would be the lefs certain. The impoffibility of Conception may arife from the narrownefs and imperfection of our Faculties, and not from any inconfiftency in the nature of the thing. So that we need not be very folicitious about the pofitive nature of thefe quantities, which are fo volatile, fubtile, and fugitive, as to efcape our Imagination; nor need we be much in pain, by what name they are to be call'd; but we may confine ourfelves wholly to the ufe of them, and to difcover their properties.
properties. They are not introduced for their own fakes, but only as fo many intermediate fteps, to bring us to the knowledge of other quantities, which are real, intelligible, and required to be known. It is fufficient that we arrive at them by a regular progrefs of diminution, and by a juft and neceffary way of reafoning; and that they are afterwards duly eliminated, and leave us intelligible and indubitable Concluffons. For this will always be the confequence, let the media of ratiocination be what they will, when we argue according to the ftrict Rules of Art. And it is a very common thing in Geometry, to make impofible and abfurd Suppofitions, which is the fame thing as to introduce impoffible quantities, and by their means to difcover truth.

We have an inftance fimilar to this, in another fpecies of Quantities, which, though as inconceiveable and as impoffible as thefe can be, yet when they arife in Computations, they do not affect the Conclufion with their impoffibility, except when they ought fo to do; but when they are duly eliminated, by juft Methods of Reduction, the Conclufion always remains found and good. Thefe. Quantities are thofe Quadratick Surds, which are diftinguifh'd by the name of impoffible and imaginary Quantities; fuch as $\sqrt{ }$ - 1 , $\sqrt{ }-2, \sqrt{ }-3, \sqrt{ }-4$, \&c. For they import, that a quantity or number is to be found, which multiply'd by itfelf thall produce a. negative quantity ; which is manifeftly impoffible. And yet thefe quantities have all varieties of proportion to one another, as thofe aforegoing are proportional to the poffible and intelligible numbers I, $\sqrt{ } 2, \sqrt{ } 3,2$, \&c. refpectively; and when they arife in Computations, and are regularly eliminated and excluded, they always leave a juft and good Conclufion.

Thus, for Example, if we had the Cubick Equation $x^{2}-12 x^{2}$ $+4 \mathrm{I} x-42=0$, from whence we were to extract the Root x; by proceeding according to Rule, we fhould have this furd Expreffion for the Root, $x=4+\sqrt[3]{3+\sqrt{ }-\frac{100}{17}}+\sqrt[3]{3-\sqrt{-\frac{100}{27}} \text {, }}$ in which the impoffible quantity $\sqrt{ } \frac{109}{27}$ is involved; and yet this Expreffion ought not to be rejected as abfurd and ufelefs, becaufe, by a due Reduction, we may derive the trae Roots of the Equation from it. For when the Cubick Root of the Frft vinculum is rightly extracted, it will be found to be the impofible Number $-1+\sqrt{ }-\frac{4}{3}$, as may appear by cubing; and when the Cubick Root of the fecond vinculum is extracted, it will be found to be $-1=\sqrt{ }-\frac{1}{3}$. Then by collecting thefe Numbers, the $\mathrm{X} . \mathrm{x}$ im-
impofibie Number $\sqrt{ }-\frac{4}{3}$ will be eliminated, and the Root of the Equation will be found $x=4-1-1=2$.

Or the Cubick Root of the firft vinculum will alfo be $\frac{3}{2}+\sqrt{ }-\frac{1}{T^{2}}$, as may likewife appear by Involution; and of the fecond vinculum it will be $\frac{3}{2}-\sqrt{ }-\frac{1}{T^{2}}$. So that another of the Roots of the given Equation will be $x=4+\frac{3}{2}+\frac{3}{2}=7$. Or the $\mathrm{Cu}-$ bick Root of the fame firft vinculum will be $-\frac{1}{2}-\sqrt{ }-\frac{2}{5} \frac{5}{2}$; and of the fecond will be $-\frac{1}{2}+\sqrt{ }-\frac{25}{1} \frac{5}{2}$. So that the third Root of the given Equation will be $x=4-\frac{1}{2}-\frac{1}{2}=3$. And in like manner in all other Cubick Equations, when the furd vincula include an impoffible quantity, by extracting the Cubick Roots, and then by collecting, the impoffible parts will be excluded, and the three Roots of the Equation will be found, which will always be poffible. But when the aforefaid furd vincula do not include an impoffible quantity, then by Extraction one poffible Root only will be found, and an impoffibility will affect the other two Roots, or will remain (as it ought) in the Conclufion. And a like judgment may be made of higher degrees of Equations.

So that thefe impoffible quantities, in all thefe and many other inftances that might be produced, are fo far from infecting or deftroying the truth of thefe Conclufions, that they are the neceffary means and helps of difcovering it. And why may we not conclude the fame of that other fpecies of impoffible quantities, if they muft needs be thought and call'd fo? Surely it may be allow'd, that if thefe Moments and infinitely little Quantities are to be efteem'd a kind of impoffible Quantities, yet neverthelefs they may be made ufeful, they may affift us, by a juft way of Argumentation, in finding the Relations of Velocities, or Fluxions, or other poffible Quantities required. And finally, being themfelves duly eliminated and cxcluded, they may leave us finite, poffible, and intelligible Equations, or Relations of Quantities.

Therefore the admitting and retaining thefe Quantities, however impoffible they may feem to be, the inveftigating their Properties with our utmoft induftry, and applying thofe Properties to ufe whenever occafion offers, is only keeping within the Rules of Reafon and Analogy; and is alfo following the Example of our ragacious aud illuftrious Author, who of all others has the greateft right to be our Precedent in thefe matters. 'Tis enlarging the number of general Principles and Methods, which will always greatly

[143]

THE

Contents of the following Comment.

I. $A^{\text {Notations on the Introduction ; or the Resolution of }}$ Equations by Infinite Series. - pac. 143
Sect. I. Of the nature and confrruction of inf finite or convergeing Series.
p. 143

Sect. II. The Revolution of Simple Equations, or of pure Powers, by infinite Series.
Sect. III. The Refolution of Numeral Affected Equations. p. 186
Sect. IV. The Refolution of Specious Equations by inf rite Seres; and frt for determining the forms of the Series, and their initial Approximations. P.191
Sect. V. The Refolution of Affected specious Equations profcute by various Methods of Analysis. P. 209
Sect. VI. Tranfition to the Method of Fluxions. - p. 235
II. Annotations on Prob. 1. or, the Relation of the flowing Quantities being given, to determine the Relations of their Fluxions.

Sect. I. Concerning Fluxions of the fort Order, and to find their Equations. - p. 241
Sect. II. Concerning Fluxions of fiperior Orders, and the method of deriving their Equations. p. 257
Sect. III. The Geometrical and Mechanical Elements of Fluxions,

[144]
 CONTENTS.

1II. Annotations on Prob. 2. or, the Relation of the Fluxions being given, to determine the Relation of the Fluents.
p. 277

Sect.I. A particular Solution; with a preparation to the general Solution, by which it is diftributed into three Cajes. ——— p. 277
Sect. II. Solution of the firft Cafe of Equations. - p. 282
Sect. III. Solution of the. Jecond Cafe of Equations. - p. 286
Sect.IV. Solution of the third Cafe of Equations, with Jome neceffary Demonftrations. —— 300
Sect. V. The Refolution of Equations; zabetber. Algebraical, or Fluxional, by the affitance of fuperior Orders of Fluxions.
p. 308

Sect. VI. An Analytical Appendix, explaining fome Terms and Expreffions in the foregoing Work. - P. 32 I Sect. VII. The Conclufion; containing a fiort recapitulation or revies of the wobole.

- p. 330

THE Reader is defired to correct the following Errors, which I hope will be thought but few, and fuch as in works of this kind are hardly to be avoided. 'Tis here neceffary to take notice of even literal Miftakes, which in fubjects of this nature are often very material. That the Errors are fo few, is owing to the kind-affitance of a fkilful Friend or ${ }^{\text {two }}{ }_{c}$ who fupplyj d my frequent abfence from i_{i} the Prefs; as alfo to the care of a diligent Printer.

ERRATA.

In the Preface, pag. xiiie lin. 3. read which
is here fubjoin'd. Ibid. 1. 5. for matter read read Hyperbola. P. 119.1. 12. read CE $\times \dot{\overline{\mathrm{I}} \mathrm{D}}$ manner, Pag. xxiii. 1. ult. for Preface, \&e. $=$ to the Fluxion, of the Area, ACEG, and rad Conclufion of, this Work. P. 7 . 1. 31 . for

 10x4y. P. 62. 1.4. read $\frac{\approx+z^{3}}{\approx}$. P.63.1.3.1. fory ready. Ibrd:1. ult. for - $\frac{y z}{v}$ read - $\frac{y z \dot{z}}{v}$. P. 64. 1.9. for z read z. Ibid. 1. 30. read i. P. 82. 1. 17. read $2 \dot{z} \approx$. P. 87. 1. 22. read $+2 a^{\frac{3}{2}} x^{\frac{3}{2}}$. Ibid. 1.22,24. rcad AFDB . P. 88 . 1.27.read. \dot{x} P:92.1.5.read $+\frac{2 a^{2} 5^{5}}{5^{5}}$. Ibid. 1.21. for z read $\dot{\approx}$. P.104. 1. 8. read $6{ }_{n t}{ }^{2}$. P. 109. 1. 33. dele as ofien. P.iro.1.29. read $\sqrt{a^{2}+z^{2}}=\sqrt{A K \times L C}=\mathrm{HA}=\mathrm{AB}=x$, P. 157. 1.13. read ax. P.168. 1.5. read $\frac{2}{2} a x$.
 z^{m+2}. P.189.1.30 for the lafp-i.read Pwo. P. 204. 1. 16: read to 2 mi R. 213 B 1.7. for Species read Series. P. 229. 1. 21, for $x-3$ read x^{-4}. Ibid. 1.24. for x^{-4} read $x-5$. P. 234. 1. 2. for yy read y. P. 236. 1. 26. read generating. P. 243. 1. 29. read -ax $x^{2} y_{y}^{-k}$. P'.'i84. i. ult. read $\frac{\dot{y}}{\dot{x}}$. P. 28, 1. 1. 17, fom right reiad
 P. 297. 1.19. for j^{-3} read y^{-1}. P.298.1.14. read-j. P.304.1.20,21.dd +bc. P. 309 . 1.18. read a ${ }^{m-3}$. P. 317 . 1. ull. read $a^{2} j^{2}$.

A DVERTISEMENT.

Lately publifhed by the Autbor,

THe British Hemisphere, or a Map of a new contrivance, proper for initiating young Minds in the firf Rudiments of Geography, and the ufe of the Globes. It is in the form of a HalfGlobe, of about ${ }^{1} 5$ Inches Diameter, but comprehends the whole known Surface of our habitable Earth; and fhews the fituation of all the remarkable Places, as to their Longitude, Latitude, Bearing and Diftance from London, which is made the Center or Vertex of the Map. It is neatly fitted up, fo as to ferve as well for ornament as ufe; and fufficient Inftructions are annex'd, to make it intelligible to every Capacity.

Sold by W. Redknap, at the Leg and Dial near the Sun Tavern in Fleet-freet; and by J. Senex, at the Globe near St. Dunfan's Church. Price, Half a Guinea.
comribute to the Advancement of true Science. In fhort, it will enable us to make a much greater progrefs and proficience, than we otherwife can do, in cultivating and improving what I have elfewhere call'd The Pbilofoply of 2uantity.

$$
\begin{array}{lllll}
F & I & N & I & S
\end{array}
$$

R: 9

$+\operatorname{ch}$

\cdots

[^0]: * Perhaps the ingenious Author of the Difcourfe calid The Araly $/$ muft be excented, who is piea'd to ask, in his fifth Qiery, Whether it le not unvecefiary, as well as ablurk.

